![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Johannesburg, South Africa (SPX) Jan 24, 2017
Nature Physics thas published online the research by a team led by physicists from the School of Physics at Wits University. In their paper titled: Characterising quantum channels with non-separable states of classical light the researchers demonstrate the startling result that sometimes Nature cannot tell the difference between particular types of laser beams and quantum entangled photons. In essence, the research show that sometimes Nature cannot tell the difference between the quantum and the classical (or real) worlds, and that a grey area does exist between the two worlds called classical entanglement.
Classical and quantum worlds "Quantum" refers to the small, and in the photonics world this means one photon - a single particle of light. The rules of the quantum world are vastly different from that of the classical world, and experiments are traditionally much harder due to the difficulty in handling just a few photons. "In the classical world our intuition holds true. There are no surprises and experiments can be done with many photons (billions and billions of them), such as laser light," explains Professor Andrew Forbes, team leader of the collaboration and Distinguished Professor in the School of Physics where he heads up the Wits Structured Light Laboratory. "But not so in the quantum world, where things are never quite as they seem. Here waves sometimes look like particles, particles like waves, and measurements change the properties of the very thing you are trying to measure."
Real-time quantum error correction is possible For example, establishing a secure quantum communication link over long distance is very challenging: "Quantum links (as in fibre optics) using patterns of light languish at short distances precisely because there is no way to protect the link against noise (interference from, for instance, fog or a bend in a cable) without detecting the photons. Yet, once they are detected their usefulness is destroyed," says Forbes. This catch 22 situation has been a seemingly insurmountable obstacle. Now the team has shown that this can be overcome using classical (many photon) light fields, enabling real-time quantum error correction. By preparing and sending a so-called "classically entangled" beam the team could show that this was identical to sending a quantum state. This means that the observed quantum entanglement decay due to noise in the link can be reversed, paving the way for major advances in secure quantum links in fibre and free-space. "We showed for the first time that classical light can be used to analyse a quantum link, acting as a direct equivalent to the behavior of the quantum state," says Bienvenu Ndagano, lead author and PhD student at Wits University. "Not similar, or mimicking, but equivalent. To show this, we exploited a particular type of laser beam, called vector beams, that have the property of being non-separable and sometimes called 'classically entangled'." Ndagano explains that the quintessential property of quantum entanglement is the non-separability of the state, meaning that one part of the system cannot be separated from the other. "But non-separability is not unique to the quantum world: you can find it in weather maps where the locations on the map and the temperatures at those locations can't be separated."
Classically entangled light Says Forbes, "What we asked was: does this mean that classical light can be used in quantum systems - a grey area between the two worlds that we call classical entanglement?". "The notion of classical entanglement is hotly contested in the physics community with some arguing that it is merely a mathematical construct," says Thomas Konrad (UKZN), co-author on the paper. "This work shows that there is physical meaning to it too, and we offer the first side-by-side data of the equivalence of classical and quantum entanglement". Previously, to fix an error in the quantum state used for secure communication would mean measuring the photon sent, which in turn would mean losing the information that one was trying to send. This work allows for long distance quantum links to be established and tested with classically entangled light: as there is no shortage of photons in the classical light, all the measurements needed to fix the errors in the quantum state can be done in real-time without destroying the quantum information. Thus, real-time error correction is possible as you can run experiments in the classical world that will tell you how to fix the error in the quantum world.
Fast and secure data transfer over real-world link While all patterns are equivalent in terms of information capacity, this work suggests that the choice of pattern also plays an important role in analysing and correcting the errors experienced by passing over the link. "By working in this grey area between the classical and the quantum we can show fast and secure data transfer over real-world links," says Forbes.
![]() ![]()
Related Links University of the Witwatersrand Cyberwar - Internet Security News - Systems and Policy Issues
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |