. | . |
Bright thinking leads to breakthrough in nuclear threat detection science by Staff Writers Livermore CA (SPX) Jul 03, 2017
Taking inspiration from an unusual source, a Sandia National Laboratories team has dramatically improved the science of scintillators - objects that detect nuclear threats. According to the team, using organic glass scintillators could soon make it even harder to smuggle nuclear materials through America's ports and borders. The Sandia Labs team has developed a scintillator made of an organic glass which is more effective than the best-known nuclear threat detection material while being much easier and cheaper to produce. Organic glass is a carbon-based material that can be melted and does not become cloudy or crystallize upon cooling. Successful results of the Defense Nuclear Nonproliferation project team's tests on organic glass scintillators are described in a paper published this week in The Journal of the American Chemical Society. Sandia Labs material scientist and principal investigator Patrick Feng started developing alternative classes of organic scintillators in 2010. Feng explained he and his team set out to "strengthen national security by improving the cost-to-performance ratio of radiation detectors at the front lines of all material moving into the country." To improve that ratio, the team needed to bridge the gap between the best, brightest, most sensitive scintillator material and the lower costs of less sensitive materials.
Inspiration from light-emitting diodes lead to performance boost The team first reported on the benefits of using organic glass as a scintillator material in June 2016. Organic chemist Joey Carlson said further breakthroughs really became possible when he realized scintillators behave a lot like light-emitting diodes. With LEDs, a known source and amount of electrical energy is applied to a device to produce a desired amount of light. In contrast, scintillators produce light in response to the presence of an unknown radiation source material. Depending on the amount of light produced and the speed with which the light appears, the source can be identified. Despite these differences in the ways that they operate, both LEDs and scintillators harness electrical energy to produce light. Fluorene is a light-emitting molecule used in some types of LEDs. The team found it was possible to achieve the most desirable qualities - stability, transparency and brightness - by incorporating fluorene into their scintillator compounds.
Pushing past crystals and plastics But it takes a lot of energy and several months to produce a trans-stilbene crystal only a few inches long. The crystals are incredibly expensive, around $1,000 per cubic inch, and they're fragile, so they aren't commonly used in the field. Instead, the most commonly used scintillators at borders and ports of entry are plastics. They're comparatively inexpensive at less than a dollar per cubic inch, and they can be molded into very large shapes, which is essential for scintillator sensitivity. As Feng explained, "The bigger your detector, the more sensitive it's going to be, because there's a higher chance that radiation will hit it." Despite these positives, plastics aren't able to efficiently differentiate between types of radiation - a separate helium tube is required for that. The type of helium used in these tubes is rare, non-renewable and significantly adds to the cost and complexity of a plastic scintillator system. And plastics aren't particularly bright, at only two-thirds the intensity of trans-stilbene, which means they do not do well detecting weak sources of radiation. For these reasons, Sandia Labs' team began experimenting with organic glasses, which are able to discriminate between types of radiation. In fact, Feng's team found the glass scintillators surpass even the trans-stilbene in radiation detection tests - they are brighter and better at discriminating between types of radiation. Another challenge: The initial glass compounds the team made weren't stable. If the glasses got too hot for too long, they would crystallize, which affected their performance. Feng's team found that blending compounds containing fluorene to the organic glass molecules made them indefinitely stable. The stable glasses could then also be melted and cast into large blocks, which is an easier and less expensive process than making plastics or trans-stilbene.
From the lab to the ports The National Nuclear Security Administration has funded the project for an additional two years. This gives the team time to see if they can use organic glass scintillators to meet additional national security needs. Going forward, Feng and his team also plan to experiment with the organic glass until it can distinguish between sources of gamma rays that are non-threatening and those that can be used to make dirty bombs.
Chicago IL (SPX) Apr 24, 2017 Just one example: In its 2017 Budget-in-Brief, the U.S. Department of Homeland Security lists among its priorities allocating $103.9 million for radiological and nuclear detection equipment "to keep U.S. ports of entry safe and secure by detecting and interdicting illicit radioactive or nuclear materials." A team led by Northeastern's Swastik Kar and Yung Joon Jung has developed a technolo ... read more Related Links Sandia National Laboratories Learn about nuclear weapons doctrine and defense at SpaceWar.com Learn about missile defense at SpaceWar.com All about missiles at SpaceWar.com Learn about the Superpowers of the 21st Century at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |