![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Moscow, Russia (SPX) Nov 04, 2016
Scientists from the Semenov Institute of Chemical Physics of the Russian Academy of Sciences (ICP RAS) and the Moscow Institute of Physics and Technology (MIPT) have demonstrated that sensors based on binary metal oxide nanocomposites are sensitive enough to identify terrorist threats and detect environmental pollutants. The results of their study have been published in Sensors and Actuators B: Chemical. Due to rapid industrial growth and the degradation of the environment, there is a growing need for the development of highly effective and selective sensors for pollutant detection. In addition, gas sensors could also be used to monitor potential terrorist threats. "Choosing the right sensor composition can make a device at least ten times more effective and enable an exceptionally fast response, which is crucial for preventing terrorist attacks," says Prof. Leonid Trakhtenberg of the Department of Molecular and Chemical Physics at MIPT, who is the leader of the research team and the head of the Laboratory of Functional Nanocomposites at ICP RAS. According to the research findings, the most promising detection systems are binary metal oxide sensors, in which one component provides a high density of conductive electrons and another is a strong catalyst. A mixed system of that kind has the two necessary components for effective gas detection, viz., an electron donor and a substance "accommodating" the reaction. An additional factor contributing to faster sensor response is the formation of chemisorption centers, i.e., the chemically active spots on the nanocrystals that facilitate gas molecule adsorption. "We are planning further research into the possibilities for sensor design presented by the multicomponent metal oxide nanocomposites incorporating nanofibers. The development of new effective sensor compositions will be based on a reasonably balanced approach involving both the experimental tests and the advancement of our theoretical understanding of the sensing mechanisms," comments Prof. Trakhtenberg. A rather promising approach to the development of new gas detection systems is the use of "core-shell type" composite metal oxide nanofibers, where the "core" and the "shell" are composed of two different oxides.
![]() ![]()
Related Links Moscow Institute of Physics and Technology The Long War - Doctrine and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |