Subscribe free to our newsletters via your
. Military Space News .




CYBER WARS
Quantum physics secures new cryptography scheme
by Staff Writers
Singapore (SPX) Mar 19, 2014


In the future, quantum cryptography might secure transactions such as identification at ATMs. (This is an artist's impression.) Researchers have demonstrated a proof-of-principle protocol known as 1-2 random oblivious transfer. Image courtesy CQT, National University of Singapore.

The way we secure digital transactions could soon change. An international team has demonstrated a form of quantum cryptography that can protect people doing business with others they may not know or trust - a situation encountered often on the internet and in everyday life, for example at a bank's ATM.

"Having quantum cryptography to hand is a realistic prospect, I think. I expect that quantum technologies will gradually become integrated with existing devices such as smartphones, allowing us to do things like identify ourselves securely or generate encryption keys," says Stephanie Wehner, a Principal Investigator at the Centre for Quantum Technologies (CQT) at the National University of Singapore, and co-author on the paper.

In cryptography, the problem of providing a secure way for two mutually distrustful parties to interact is known as 'two-party secure computation'. The new work, published in Nature Communications, describes the implementation using quantum technology of an important building block for such schemes.

CQT theorists Wehner and Nelly Ng teamed up with researchers at the Institute for Quantum Computing (IQC) at the University of Waterloo, Canada, for the demonstration.

"Research partnerships such as this one between IQC and CQT are critical in moving the field forward," says Raymond Laflamme, Executive Director at the Institute for Quantum Computing. "The infrastructure that we've built here at IQC is enabling exciting progress on quantum technologies."

"CQT and IQC are two of the world's largest, leading research centres in quantum technologies. Great things can happen when we combine our powers," says Artur Ekert, Director of CQT.

The experiments performed at IQC deployed quantum-entangled photons in such a way that one party, dubbed Alice, could share information with a second party, dubbed Bob, while meeting stringent restrictions. Specifically, Alice has two sets of information. Bob requests access to one or the other, and Alice must be able to send it to him without knowing which set he's asked for. Bob must also learn nothing about the unrequested set. This is a protocol known as 1-2 random oblivious transfer (ROT).

ROT is a starting point for more complicated schemes that have applications, for example, in secure identification. "Oblivious transfer is a basic building block that you can stack together, like lego, to make something more fantastic," says Wehner.

Today, taking money out of an ATM requires that you put in a card and type in your PIN. You trust the bank's machine with your personal data. But what if you don't trust the machine? You might instead type your PIN into your trusted phone, then let your phone do secure quantum identification with the ATM (see artist's impression). Ultimately, the aim is to implement a scheme that can check if your account number and PIN matches the bank's records without either you or the bank having to disclose the login details to each other.

Unlike protocols for ROT that use only classical physics, the security of the quantum protocol cannot be broken by computational power. Even if the attacker had a quantum computer, the protocol would remain secure.

Its security depends only on Alice and Bob not being able to store much quantum information for long. This is a reasonable physical assumption, given today's best quantum memories are able to store information for minutes at most. Moreover, any improvements in memory can be matched by changes in the protocol: a bigger storage device simply means more signals have to be sent in order to achieve security. (The idea of 'noisy storage' securing quantum cryptography was developed by Wehner in earlier papers.)

To start the ROT protocol, Alice creates pairs of entangled photons. She measures one of each pair and sends the other to Bob to measure. Bob chooses which photons he wants to learn about, dividing his data accordingly without revealing his picks to Alice.

Both then wait for a length of time chosen such that any attempt to store quantum information about the photons is likely to fail.

To complete the oblivious transfer, Alice then tells Bob which measurements she made, and they both process their data in set ways that ensure the result is correct and secure within a pre-agreed margin of error.

In the demonstration performed at IQC, Alice and Bob achieved a random oblivious transfer of 1,366 bits. The whole process took about three minutes.

The experiment adapted devices built to do a more standard form of quantum cryptography known as quantum key distribution (QKD), a scheme that generates random numbers for scrambling communication. Devices for QKD are already commercially available, and miniaturised versions of this experiment are in principle possible using integrated optics. In the future, people might carry hand-held quantum devices that can perform this kind of feat.

"We did the experiment with big and bulky optics taking metres of space, but you can well imagine this technology being shrunk down to sit happily next to classical processing circuits on a small little microchip. The field of integrated quantum optics has been progressing in leaps and bounds, and most of the key pieces required to implement ROT have already been successfully demonstrated in integrated setups a few millimetres in size," says Chris Erven, who performed the experiments at IQC as a PhD student under the supervision of Raymond Laflamme and Gregor Weihs. Weihs is now at the University of Innsbruck, Austria. Erven is now a postdoctoral fellow at the University of Bristol, UK.

"An Experimental Implementation of Oblivious Transfer in the Noisy Storage Model", Nature Communications DOI:10.1038/ncomms4418 (2014)

.


Related Links
Centre for Quantum Technologies at the National University of Singapore
Cyberwar - Internet Security News - Systems and Policy Issues






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CYBER WARS
NATO websites targeted in attack claimed by Ukrainian hackers
Paris (AFP) March 16, 2014
NATO said several of its websites were targeted in a "significant" cyber attack on Saturday that was claimed by Ukrainian hackers in what appeared to be the latest bout of virtual warfare linked to the country's crisis. Spokeswoman for the military alliance Oana Lungescu said on Twitter that the websites had been hit by "a significant DDoS (denial of service) attack", but that it had had "no ... read more


CYBER WARS
US to continue technology development against ballistic missile threat

Israel says long-range rockets aboard 'Iran arms ship'

Raytheon awarded contract for Patriot

Lockheed Martin Adapts Missile Defense Analytics for Early Sepsis Detection

CYBER WARS
Lockheed Martin Receives US Army Contract For Guided MLRS Rocket Production

N. Korean military defends missile tests

S. Korea calls North missile tests calculated provocation

South Korea buys more Phalanx missles from Raytheon

CYBER WARS
Israel drone crashes in Gaza

Air Strato first take-off and landing

US aviation agency to appeal drone ruling

For US forces in Africa, spy drones in short supply

CYBER WARS
NGG Starts Integration Of High-Speed Downlink Antennas EHF Comms Payload

Catching signals from a speeding satellite

Raytheon receives contract modification on JPSS Common Ground System

ASC Signal Completes First Phase of Horizon Teleports Installation and Receives Additional Antenna Order

CYBER WARS
DARPA Begins Early Transition of Adaptive Vehicle Make Technologies

China soldiers too big for outdated tanks: report

From gas to submarines, Great War was crucible for deadly innovation

Researcher: Nazis experimented with mosquitoes as weapons

CYBER WARS
Japan draws up overhaul of arms-export ban

China will not stop increasing military spending: media

US gun lobby sees media as enemy

Rolls-Royce says facing US corruption probe

CYBER WARS
Michelle Obama looks to ease mistrust on China trip

Russia flies warplanes to Belarus for joint combat duty

India says report on '62 war with China to stay classified

China's Xi seeks both power and friendship abroad

CYBER WARS
Chelyabinsk meteor to help develop nanotechnology

Optical nano-tweezers take over the control of nano-objects

NIST microanalysis technique makes the most of small nanoparticle samples

Experts warn against nanosilver




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.