. | . |
Researchers discover shortcut to satellite-based quantum encryption network by Staff Writers Washington DC (SPX) Jun 16, 2017
In a new study, researchers demonstrate ground-based measurements of quantum states sent by a laser aboard a satellite 38,000 kilometers above Earth. This is the first time that quantum states have been measured so carefully from so far away. "We were quite surprised by how well the quantum states survived traveling through the atmospheric turbulence to a ground station," said Christoph Marquardt from the Max Planck Institute for the Science of Light, Germany. "The paper demonstrates that technology on satellites, already space-proof against severe environmental tests, can be used to achieve quantum-limited measurements, thus making a satellite quantum communication network possible. This greatly cuts down on development time, meaning it could be possible to have such a system as soon as five years from now." A satellite-based quantum-based encryption network would provide an extremely secure way to encrypt data sent over long distances. Developing such a system in just five years is an extremely fast timeline since most satellites require around 10 years of development. Normally, every component - from computers to screws - must be tested and approved to work in the harsh environmental conditions of space and must survive the gravitational changes experienced during the launch. Marquardt and his colleagues from the division of Gerd Leuchs at the Max Planck Institute in Erlangen report their new research in Optica, The Optical Society's journal for high impact research.
Using light to keep data safe The looming security threat has placed more attention on implementing stronger encryption techniques such as quantum key distribution. Rather than relying on math, quantum key distribution uses properties of light particles known as quantum states to encode and send the key needed to decrypt encoded data. If someone tries to measure the light particles to steal the key, it changes the particles' behavior in a way that alerts the intended communicating parties that the key has been compromised and should not be used. The fact that this system detects eavesdropping means that secure communication is guaranteed. Although methods for quantum encryption have been in development for more than a decade, they don't work over long distances because residual light losses in optical fibers used for telecommunications networks on the ground degrade the sensitive quantum signals. Quantum signals cannot be also regenerated without altering their properties by suing optical amplifiers as it is done for classical optical data. For this reason, there has been a recent push to develop a satellite-based quantum communication network to link ground-based quantum encryption networks located in different metropolitan areas, countries and continents. Although the new findings showed that quantum communication satellite networks do not need to be designed from scratch, Marquardt notes that it will still take 5 to 10 years to convert ground based systems to quantum-based encryption to communicate quantum states with the satellites.
Measuring quantum states This technology is now being used commercially in space by laser communication terminals onboard Copernicus - the European Union's Earth Observation Programme - and by SpaceDataHighway, the European data relay satellite system. It turned out that this satellite optical communications technology works much like the quantum key distribution method developed at the Max Planck Institute. Thus, the researchers decided to see if it was possible to measure quantum states encoded in a laser beam sent from one of the satellites already in space. In 2015 and the beginning of 2016, the team made these measurements from a ground-based station at the Teide Observatory in Tenerife, Spain. They created quantum states in a range where the satellite normally does not operate and were able to make quantum-limited measurements from the ground. "From our measurements, we could deduce that the light traveling down to Earth is very well suited to be operated as a quantum key distribution network," Marquardt said. "We were surprised because the system was not built for this. The engineers had done an excellent job at optimizing the entire system." The researchers are now working with Tesat-Spacecom and others in the space industry to design an upgraded system based on the hardware already used in space. This will require upgrading the laser communication design, incorporating a quantum-based random number generator to create the random keys and integrating post processing of the keys. "There is serious interest from the space industry and other organizations to implement our scientific findings," said Marquardt. "We, as fundamental scientists, are now working with engineers to create the best system and ensure no detail is overlooked."
Research Report: K. Gunthner, I. Khan, D. Elser, B. Stiller, O. Bayraktar, C.R. Muller, K. Saucke, D. Trondle, F. Heine, S. Seel, P. Greulich, H. Zech, B. Gutlich, S. Philipp-May, C. Marquardt, G. Leuchs, "Quantum-limited measurements of optical signals from a geostationary satellite," Optica, Volume 4, Issue 6, 611-616V(2017). DOI: 10.1364/OPTICA.4.000611
Washington (UPI) Jun 8, 2017 Thales has launched a new cyber-security center in Belgium that will allow the replicating of network and information systems to prepare for cyber attacks. The company's Cyberlab, located south of Brussels, will also educate students and enhance the skills of cyber-security specialists. "As the recent worldwide cyber-attack WannaCry, which affected in particular the operational f ... read more Related Links Max Planck Institute for the Science of Light Cyberwar - Internet Security News - Systems and Policy Issues
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |