. | . |
Scientists design a QKD-based quantum private query with no failure by Staff Writers Beijing, China (SPX) Nov 26, 2015
Cryptography is the approach to protect data secrecy in public environment. Certain cryptographic communications require not only the security of the transmitted message against eavesdropping from an outside adversary, but also the communicators' individual privacy against each other. Symmetrically private information retrieval (SPIR), which deals with the problem of private user queries to a database, is an example of such communication protocols. In a SPIR protocol Alice can obtain one item (i.e. one secret) from Bob's secret database in such a manner that Bob does not know which item Alice has obtained and, simultaneously, Alice cannot get additional items except the one she wanted in the database. With the advantage of unconditional security, as we know, quantum cryptography has attracted a great deal of attention now. Quantum private query (QPQ) is the quantum scheme for SPIR problem. Since the first QPQ protocol was proposed by Vittorio Giovannetti et al in 2008, quite a few scholars have participated in the study of this interesting and important field. The original QPQ protocols are based on oracle operations. Though those protocols have significant advantages in theory, they are difficult to implement since the dimension of the oracle operation would be exceedingly high when a large database is concerned. In 2011, to overcome the above drawback, scholars proposed a new type of QPQ, i.e. quantum-key-distribution (QKD)-based QPQ. Based on the mature technology of QKD, this new kind of QPQ has some important advantages such as being easy to realize and loss-tolerant. Therefore, as a practical model, QKD-based QPQ is overwhelmingly attractive and soon becomes a research hotspot. However, QKD-based QPQ seems somewhat unreliable in the sense that all the existing protocols would fail with a non-zero probability. Besides, the database would generally reveal some additional secrets to the honest user. Even worse, to reduce the failure probability, one must increase the expectation of the number of the revealed secrets, while to protect the security of the database better, the protocol would be more likely to fail. It seems incompatible to improve the above two disadvantages of the present QKD-based QPQ. Fortunately, based on a differential phase-shift (DPS) QKD protocol, researchers have tactfully and perfectly removed these two obstacles. The DPS-QKD protocol mentioned above was proposed by Toshihiko Sasaki et al. in the famous journal Nature in 2014. In this QKD protocol participants need not to monitor signal disturbance anymore. It can tolerate up to 50% bit error rate by setting a parameter large enough, while the generally used BB84 protocol can only tolerate 11% at most. Besides, the DPS-QKD protocol is naturally immune to the photon-number-splitting attack, where the adversary utilizes the imperfection of the photon source in practice to attack. As is seen, the technology of DPS has greatly promoted the development of QKD and captured lots of attention. Recently, researchers find that DPS is also beneficial for QKD-based QPQ. Based on the DPS-QKD, a new QPQ protocol was proposed by Bin Liu, Fei Gao, Wei Huang and Qiaoyan Wen, scientists at the State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, in the Chinese city of Beijing (See Figure 1). "It maintains the advantages of the QKD-based QPQ, i.e., easy to implement and loss tolerant" according to the four scholars. In an article connected with College of Computer Science, Chongqing University, in the Chinese city of Chongqing, they revealed in the study, which was published in Science China-Physics, Mechanics and Astronomy, that it is the randomness in the dilution of the oblivious key, one of the main processes in such protocols, that caused the possible failure of previous QKD-based QPQ. And utilizing the features of DPS, their protocol successfully avoids the process of dilution. Without the process of dilution, this new protocol becomes more reliable and reasonable, compared with the previous QKD-based QPQ protocols. Just as the scholars stated in their article: "Different from the situations in the previous QKD-based QPQ protocols, in our protocol, the number of the items an honest user will obtain is always one and the failure probability is always zero." They also calculated an upper bound for the leaked information of the database in theory, and claimed that when the number of the database items "become larger, the advantage of our protocol's bound would be highlighted comparing with the other QKD-based QPQ protocols". What's more, just like the DPS-QKD, the QKD-based QPQ protocol proposed by the four scholars is also naturally immune to the photon-number-splitting attacks. While other QKD-based QPQ protocols would leak more secrets of the database than expected to both the outside adversaries and the dishonest users provided the photon source were not perfect. At the end of this article, these four scholars summarized "the proposed protocol is the first QKD-based QPQ protocol without the process of the oblivious key dilution, and, therefore, it is the first QKD-based one with no failure probability and no information reveal for the database when the user is honest", and they believed that "the proposed protocol initiates a new branch of QKD-based QPQ". LIU Bin, GAO Fei, HUANG Wei, WEN QiaoYan, QKD-based quantum private query without a failure probability, Science China-Physics, Mechanics and Astronomy, 2015, vol.58, No.10: 100301, DOI: 10.1007/s11433-015-5714-3
Related Links Science China Press Cyberwar - Internet Security News - Systems and Policy Issues
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |