|
. | . |
|
by Staff Writers Knoxville TN (SPX) Jun 17, 2014
Researchers at UT are a step closer to creating a prophylactic drug that would neutralize the deadly effects of the chemical weapons used in Syria and elsewhere. Jeremy Smith, UT-ORNL Governor's Chair and an expert in computational biology, is part of the team that is trying to engineer enzymes-called bioscavengers-so they work more efficiently against chemical weapons. The work is a joint effort between scientists at UT, Oak Ridge National Laboratory, and a French national laboratory in Grenoble. Their study was published recently in the Journal of Physical Chemistry. Nerve agents, such as sarin, are among the most highly toxic chemical weapons. The study focuses on engineering enzymes that catalyze the hydrolysis of nerve agents as a prophylactic approach to diminishing their toxic effects. "Enzymes exist that can potentially chew up nerve agents and render them useless before they've had time to act, but they need to be improved to work faster," Smith said. The researchers are using neutron scattering and computational sciences to study these nerve agent bioscavengers. Neutron scattering allows the scientists to get a detailed three-dimensional view of the enzymes. Computer simulation then uses this view to understand how the enzymes break down the nerve agents. "The simulations produced an unexpected result," Smith said. "The enzymes break down sarin in an unusual way. Now we can use that result to engineer them rationally." The team is seeking funding for research into how the enzyme-a protein that doesn't exist in the human body but is made in nature by squid-can be modified so it is more efficient in degrading specific nerve agents. There is much work to be done, including introducing key changes, or mutations, that would improve the activity of the enzyme. "Using an enzyme from a squid as a bioscavenger in humans is problematic because the human body will recognize it as a foreign substance and chop it up," said research team member Jerry Parks, a research staff scientist in ORNL's Biosciences Division. "Other groups have already shown possible ways to get around that problem. Also, there happens to be a similar enzyme in humans that is currently being developed by other groups. Information from our study may benefit them too." Ultimately, the researchers will have to figure out the best way to administer the enzyme to humans. It probably would be an injection, but it could be an aerosol spray or a patch. Still, the work holds promise to help make the world a safer place. "We hope that prophylactically administering efficient bioscavengers will make the use of nerve agents much less attractive to belligerents," Smith said.
Related Links University of Tennessee The Long War - Doctrine and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |