. | . |
Tampa Bay Becomes "Smart Bay" With Well-Placed Sensors
A demonstration in July in which scientists and engineers from the University of South Florida placed sophisticated, small, rugged sensors at strategic points in Tampa Bay and downloaded data from them wirelessly illustrated how public, private, scientific and academic communities could remotely monitor a number of bay conditions. "Our broadband wireless coastal sensor network project has developed and deployed multiple wireless sensors capable of monitoring biological, chemical and physical targets that affect Tampa Bay and send that 'real-time' information back to shore," said David Fries, the project's principle investigator from the College of Marine Science's Center for Ocean Technology. The wireless capability, said Fries, is the newest step in making sensing systems more effective. "The focus of the project is to develop a coastal security system and improve marine ecosystem protection and management," he explained. "Additional applications can be in waterway transportation and supporting ocean forecasting models." The sensors are examples of micromachine technology called Micro-Electro-Mechanical-Systems (MEMS). One key demonstrated device was a low cost salinity sensor made of waterproof printed circuit MEMS materials. According to Fries, for a large network to be deployed, sensors with communications abilities must be low power, inexpensive and rugged, standing up to whatever the marine environment dishes out, including hurricanes, changes in salinity and fresh water input, hazardous materials spills and land run-off. The water quality component of the sensing network will eventually monitor chlorophyll, turbidity, dissolved oxygen and other biogeochemical qualities. Ocean sensing systems are an emerging reality, but the pace of growth has been hindered by its expense. "The immediate problem for ocean sensor network growth is not a lack of technologies, but the lack of a means to deploy a high density of measurement devices inexpensively," explained Fries. Accordingly, the USF team believes many of the sensors needed for effective ocean observation can be further miniaturized. "Sensors for imaging, pressure, temperature, biochemical traces and pathogens can all be reduced in size and combined and employed to get a better understanding of what is happening underwater," said Fries. "We have already developed a self-contained, network of fieldable microsensors fabricated with micromachine technology." The next step, and one which is well underway, is integrating the broadband sensor network with small, autonomous vehicles and more sensors into an adaptive network. The project was supported with a grant from the Office of Naval Research. Related Links College of Marine Science's Center for Ocean Technology SpaceWar Search SpaceWar Subscribe To SpaceWar Express A Revolution In Oceanic Exploration Reveals An "Alien" World On Earth Washington DC (SPX) Feb 21, 2005 Scientists can now visualize the ocean floor in remote areas of the Arctic, observe rockfish hideouts, and see live images of coral cities thousands of meters under the sea's surface. Soon their robots will be able to "live" on the bottom of the ocean - monitoring everything from signs of tsunamis to the effects of deep sea drilling.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |