. | . |
4D composite printing can improve the wings of drones by Patrick Lejtenyi Montreal, Canada (SPX) May 11, 2022
The aviation industry faces multiple pressures from higher fuel costs and increased scrutiny over the environmental and quality-of-life impacts from its aircraft. Researchers are looking for new methods of keeping expenses down while improving overall efficiency, and the relatively new market of unmanned aerial vehicles (UAVs) - or drones - is no exception. UAVs are occupying an ever-growing space in aviation circles. In a new paper published in the journal Composite Structures, Suong Hoa and his student co-authors present a method to make UAV wings cheaper to manufacture and more efficient in flight. Hoa is a professor of mechanical, industrial and aerospace engineering at the Gina Cody School of Engineering and Computer Science. Using a technique Hoa pioneered known as 4D printing of composites, the authors performed a feasibility study on the application of a new way to manufacture adaptive compliant trailing edge (ACTE) morphing wings. The experimental technology replaces the commonly used hinged wing flap with one that is attached to the main wing body but can bend up to 20 degrees. "Our paper shows that a UAV using this kind of wing can support a good amount of load for small or medium-sized vehicles," says Hoa, director of the Concordia Centre for Composites.
Using material reactions Composite 4D printing is more complex. Rather than using a soft, dough-like substance commonly used by 3D and 4D printers, it relies on a sinewy combination of long, fine filaments held in place by a resin. Each filament is only 10 microns thick - about 1/10th the diameter of a human hair. The 4D composite printer unrolls its filament-resin mixture in ultra-thin layers at 90-degree angles from each other. The layers are then compacted together and cured in an oven at 180 C, and then cooled down to 0 C, creating an object that is stiff but not brittle. As the authors explain in their paper, this allows them to create a section of material with a uniform curvature that is sandwiched in between the wing flap's upper and lower surfaces. It is flexible and strong enough to support the 20-degree deformation the wing requires for flight maneuverability. "The idea is to have a wing that can change its shape easily during flight, which would be a great benefit as compared to fixed-wing aircraft," Hoa explains. He believes the composite 4D technology has great potential for all manner of applications. Its products' transportability, he says, is a major draw. "Because it is flat, it is easy to package to send to remote areas, from Canada's Far North to outer space."
Research Report:Development of a new flexible wing concept for Unmanned Aerial Vehicle using corrugated core made by 4D printing of composites
Testing interactions between drones and traditional aircraft Cochstedt, Germany (SPX) May 08, 2022 Magdeburg-Cochstedt Airport has rejoined the German aviation network. The official reopening took place on 6 May 2022, attended by representatives from government, academia and industry. Take-offs and landings for aircraft up to 5.7 tonnes will once again be possible at Magdeburg-Cochstedt Airport, initially in accordance with visual flight rules. Linking the airport with the National Experimental Test Center for Unmanned Aircraft Systems of the German Aerospace Center, has created a unique test infrast ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |