. Military Space News .
Airborne Drones, Mimicking Gulls, Alter Wing Shape For Agility

On Aug. 11, 2005, Rick Lind, a University of Florida assistant professor of aerospace engineering, examines a prototype of a tiny surveillance airplane that can change shape during flight. Mimicking seagulls, the plane�s wings can turn up, level out, and turn down, enabling it to become more agile or more stable as desired. The plane is a step toward tiny military drones that can soar over cities and dive between buildings to shoot surveillance photos, test for chemical or biological weapons or perform other tasks.

Gainesville FL (SPX) Aug 24, 2005
The military's next generation of airborne drones won't be just small and silent � they'll also dive between buildings, zoom under overpasses and land on apartment balconies.

At least, that's what University of Florida engineers are working toward.

Funded by the U.S. Air Force and NASA, UF aerospace engineers have built prototypes of 6-inch- to 2-foot- drones capable of squeezing in and out of tight spots in cities - like tiny urban stunt planes.

Their secret: seagull-inspired wings that "morph," or change shape, dramatically during flight, transforming the planes' stability and agility at the touch of a button on the operator's remote control.

"If you fly in the urban canyon, through alleys, around parking garages and between buildings, you need to do sharp turns, spins and dives," said Rick Lind, a UF assistant professor of mechanical and aerospace engineering who heads the project. "That means you need to change the shape of the aircraft during flight."

The Air Force's Predator Unmanned Aerial Vehicle and other military drones have been key to military operations in Iraq and Afghanistan. But the drones, which shoot surveillance images and sometimes also fire missiles, are designed to soar high above the landscape.

That limits their ability to snoop up close in the windows, alleys, corners and other urban crevices of the tight neighborhoods that define many cities, Lind said.

The UF planes are intended to correct this deficiency and add new capabilities, such as landing in tight spots during a mission. That could be useful, for example, if the planes, equipped with sensors for biological or chemical weapons, were investigating single buildings where the weapons were suspected of being made, Lind said.

Lind came to UF in 2001 from NASA, where one of his last projects involved modifying the wings of an F-18 fighter to change shape during flight. He drew on this research for the drones, but he also had another source of inspiration: the Wright brothers' first plane.

As Lind noted, unlike later planes, the wings of that biplane had no flaps, or ailerons. Instead, the brothers controlled the plane's roll by using cables to twist the shape of the wings up and down during flight. Birds also change wing shape.

"Birds morph all the time, and they're very agile," Lind said. "There's no reason we can't achieve the same control that birds achieve."

The first prototype in the 3-year-old UF effort copied the Wright Brothers' approach by using tiny motors to twist threads and move flexible wings. A traditional rudder and elevators on the tail, meanwhile, control up-and-down and side-to-side motions.

The downfall of the thread approach was that the wings could only be pulled down, not pushed up, which limited their capabilities. The next version replaced the threads with metal rods, allowing both up and down motion and improving performance.

The latest version, built by mechanical and aerospace engineering doctoral student Mujahid Abdulrahim, goes a step further. Impressed by seagulls' ability to hover, dive and climb rapidly, Abdulrahim photographed the gulls close-up during flight. The images showed the gulls' wings flexing at both their shoulder and elbow joints as they altered flight patterns.

Abdulrahim added this ability in the new prototype, with promising results. With the wings mimicking the gulls' elbow in the down position, the plane loses stability but becomes highly maneuverable. With the wings in the elbow straight position, it glides well. And with the wings in the elbow up position, it's highly controllable and easy to land.

Motors can transform the wings from the down to the up position in flight in 12 seconds, "fast enough to use in a city landscape," Abdelrahim said.

The bird-like prototypes are strikingly maneuverable, capable, for example, of completing three, 360-degree rolls in one second. (An F-16 fighter jet can manage at least one roll per second, but three rolls would produce excessive gravity force, killing the pilot).

Flying in videotaped demonstrations, they are so agile they appear out of control at times, and indeed the planes require considerable talent by the remote control pilot.

The Air Force and NASA have so far provided about $3 million for the UF research, a substantial portion of which is aimed at addressing that issue by making the planes easier to fly. The engineers' goal is to make the planes autonomous, or flyable without human pilots. That won't be easy, but it would give the planes remarkable utility.

"If the vehicle can search an area by itself, you have almost instantaneous response to what's being threatened," Lind said.

Lind, Abdulrahim and other researchers involved in the effort have authored nine academic papers on the research, including two on the gull-wing aircraft.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Northrop Grumman Unveils Newest Target For U.S. Navy
San Diego CA (SPX) Aug 24, 2005
Northrop Grumman has unveiled its BQM-74F which is the U.S. Navy's next-generation subsonic aerial target that can fly longer distances at much higher speeds and with increased maneuverability than before.







  • US Hopes Sino-Russian Maneuvers Don't Destablize Region
  • US Congress Urged To Press For Details On Plan For Global Troop Realignment
  • Analysis: Indo-U.S. Ties Not To Hurt China
  • US-Indian Military Accord Does Not Compromise Security: Defence Minister

  • Outside View: NY Awaits Iranian President
  • Analysis: Is A Solution Still Viable?
  • Iran President Promises 'Innovations' To Solve Nuclear Row
  • US Lobbying For Iran To Face UN Security Council On Nuclear Issue

  • Hellfire Thermobaric Warhead Approved For Production
  • Lockheed Martin Successfully Tests Loitering Attack Missile Warhead
  • Lockheed Martin Successful In Boosted Penetrator Test
  • Estonia To Upgrade Weak Air Defence System With New Missiles

  • Orbital Successfully Launches Second Target Rocket For MDA's CMCM-1 Program
  • BMD Focus: US, China Duel In South Asia
  • U.S., India Move Fast On Patriot Coop
  • BMD Focus: The search for Gen. Schriever

  • GE, Rolls-Royce Win 2.4 Billion Dollar Joint Strike Engine Deal
  • Energia Makes A Big Show At MAKS
  • ESA At Russia's Annual MAKS Expo
  • Airport Experts Gather At NASA Ames To Plan For Future

  • Airborne Drones, Mimicking Gulls, Alter Wing Shape For Agility
  • Northrop Grumman Unveils Newest Target For U.S. Navy
  • Unmanned Remote Sensing Aircraft Takes Flight
  • GlobeTel Wireless Enters Asia With HotZone Wireless Networks

  • Americans' Confidence In Military And Media Falling: Poll
  • Walker's World: A Sunni-Shiite Civil War?
  • Benchmarks: Iraq's Black August Continues
  • Outside View: Ink Blots For Iraq

  • DRS To Produce Infrared Assemblies For Javelin Missile Command Launch Unit
  • NGC Selected as Lead System Integrator for U.S. FIRRE Program
  • Northrop Grumman Delivers Bid For Air Force Electronic Attack Requirement
  • NSA's New Boss Puts Faith In Hi Tech Fixes

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement