. | . |
AI helps soldiers learn many times faster in combat by Staff Writers Adelphi MD (SPX) Apr 30, 2018
New technology allows U.S. Soldiers to learn 13 times faster than conventional methods and Army researchers said this may help save lives. At the U.S. Army Research Laboratory, scientists are improving the rate of learning even with limited resources. It's possible to help Soldiers decipher hints of information faster and more quickly deploy solutions, such as recognizing threats like a vehicle-borne improvised explosive device, or potential danger zones from aerial war zone images. The researchers relied on low-cost, lightweight hardware and implemented collaborative filtering, a well-known machine learning technique on a state-of-the-art, low-power Field Programmable Gate Array platform to achieve a 13.3 times speedup of training compared to a state-of-the-art optimized multi-core system and 12.7 times speedup for optimized GPU systems. The new technique consumed far less power too. Consumption charted 13.8 watts, compared to 130 watts for the multi-core and 235 watts for GPU platforms, making this a potentially useful component of adaptive, lightweight tactical computing systems. Dr. Rajgopal Kannan, an ARL researcher, said this technique could eventually become part of a suite of tools embedded on the next generation combat vehicle, offering cognitive services and devices for warfighters in distributed coalition environments. Developing technology for the next generation combat vehicle is one of the six Army Modernization Priorities the laboratory is pursuing. Kannan collaborates with a group of researchers at the University of Southern California, namely Prof. Viktor Prasanna and students from the data science and architecture lab on this work. ARL and USC are working to accelerate and optimize tactical learning applications on heterogeneous low-cost hardware through ARL's - West Coast open campus initiative. This work is part of Army's larger focus on artificial intelligence and machine learning research initiatives pursued to help to gain a strategic advantage and ensure warfighter superiority with applications such as on-field adaptive processing and tactical computing. Kannan said he is working on developing several techniques to speed up AI/ML algorithms through innovative designs on state-of-the-art inexpensive hardware. Kannan said the techniques in the paper can become part of the tool-chain for potential projects. For example, a new adaptive processing project that recently started where he's a key researcher could use these capabilities. His paper on accelerating stochastic gradient descent, a technique ubiquitous to many machine learning training algorithms, won the best-paper award at the 26th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, the premier international conference on technical research in FPGAs, held in Monterey, California, Feb. 25-27.
In New Guinea, human thigh bone daggers were hot property: study Paris (AFP) April 24, 2018 New Guinea warriors harvested thigh bones from their dead fathers to fashion into ornamental but deadly daggers used to kill and maim enemies, sometimes to eat them. But why use human bone when equally lethal daggers were made from the shin bones of large, flightless birds called cassowaries - abundant, and easier to catch and kill? Experts have long hesitated between inherent bone ruggedness and symbolism as the reason for the proclivity. On Wednesday, an unusual study concluded that human ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |