. | . |
Deep drone acrobatics by Staff Writers Zurich, Switzerland (SPX) Jun 24, 2020
Since the dawn of flight, pilots have used acrobatic maneuvers to test the limits of their airplanes. The same goes for flying drones: Professional pilots often gage the limits of their drones and measure their level of mastery by flying such maneuvers in competitions Working together with microprocessor company Intel, a team of researchers at the University of Zurich has now developed a quadrotor helicopter, or quadcopter, that can learn to fly acrobatic maneuvers. While a power loop or a barrel role might not be needed in conventional drone operations, a drone capable of performing such maneuvers is likely to be much more efficient. It can be pushed to its physical limits, make full use of its agility and speed, and cover more distance within its battery life. The researchers have developed a navigation algorithm that enables drones to autonomously perform various maneuvers - using nothing more than onboard sensor measurements. To demonstrate the efficiency of their algorithm, the researchers flew maneuvers such as a power loop, a barrel roll or a matty flip, during which the drone is subject to very high thrust and extreme angular acceleration. "This navigation is another step towards integrating autonomous drones in our daily lives," says Davide Scaramuzza, robotics professor and head of the robotics and perception group at the University of Zurich.
Trained in simulation The neural network is trained exclusively through simulated acrobatic maneuvers. This has several advantages: Maneuvers can easily be simulated through reference trajectories and do not require expensive demonstrations by a human pilot. Training can scale to a large number of diverse maneuvers and does not pose any physical risk to the quadcopter. Only a few hours of simulation training are enough and the quadcopter is ready for use, without requiring additional fine-tuning using real data. The algorithm uses abstraction of the sensory input from the simulations and transfers it to the physical world. "Our algorithm learns how to perform acrobatic maneuvers that are challenging even for the best human pilots," says Scaramuzza.
Fast drones for fast missions "Human pilots can quickly process unexpected situations and changes in the surroundings, and are faster to adjust," says Scaramuzza. Nevertheless, the robotics professor is convinced that drones used for search and rescue missions or for delivery services will benefit from being able to cover long distances quickly and efficiently.
Droniq and Sky Drone make BVLOS drone flights with real-time command and control possible Frankfurt, Germany (SPX) Jun 17, 2020 Frankfurt-based Droniq and Sky Drone have entered into a strategic partnership that allows Droniq to use Sky Drone's unique technology for controlling UAS (Unmanned Aerial Systems) remotely in real-time and without any limitation in range. Based on this technology Droniq will offer a complete hardware package for locating, controlling and transmitting data of drones during BVLOS (beyond visual line of sight) flights. This technology is part of the UTM (UAS Traffic Management) system Droniq offers ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |