![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Cochstedt, Germany (SPX) Feb 11, 2022
What happens when the radio connection to a drone is interrupted? How can drones fly autonomously even in congested traffic? These and other questions were addressed by the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) in the final phase of its City Air Traffic Management (City-ATM) project. The researchers focused on investigating traffic scenarios in which a large number of drones with varying equipment are operated jointly and without conflict in shared airspace. At the end of 2021, the final flight tests with several drones took place at the National Experimental Test Center for Unmanned Aircraft Systems in Cochstedt, where the researchers demonstrated the functionalities they had developed. "Drones are usually controlled from the ground. This works for hobby pilots with a radio remote control and with constant visual contact with the drone," says Alexander Kuenz from the DLR Institute of Flight Guidance. "For more complex drone tasks, ground control stations are used, such as those being developed in the City-ATM project." The tasks of these ground control stations include the planning, control and monitoring of flights. This allows the researchers to design and plan complex missions, with the resulting flight path then sent to the respective drone. The pilot monitors the execution of the mission from the ground. The system supports them by, among other things, recognising and avoiding conflict situations with other air traffic and sending the affected drones modified flight paths. But what happens if there are problems with the ground control station, for example if the radio connection to the drone is lost?
In emergency situations drones must be able to act autonomously With this system, the drone 'knows' when it will be at a certain location in advance and can detect future hazardous approaches with surrounding air traffic at an early stage and avoid them safely and efficiently. The drone in the City-ATM system receives real-time information about the current air traffic environment, such as civil air transport, other drones or gliders, from a tracking server of the German air traffic control (Deutsche Flugsicherung GmbH; DFS). The server collects air traffic data, evaluates it and makes it available. "Other obstacles, such as trees, masts or hills, are detected by the drone via lidar sensors that constantly scan the space in front of the drone using 3D mapping lasers," Kuenz explains. "An on-board conflict detection and avoidance software module plans the drone's flight path around obstacles if necessary."
Demonstration of mixed drone traffic in Cochstedt In this scenario of mixed real and virtual drone traffic, the DexHawk research drone was to fly its mission autonomously, recognising and autonomously avoiding conflicts with surrounding air traffic. Researchers from the DLR Institute of Flight Systems also used these tests to demonstrate a new operating concept with another experimental drone to enable flights beyond the pilot's line of sight within the scope of new legal framework introduced in 2021. This is an important basis for the future operation of drones in urban environments. "Temperatures around zero degrees Celsius and icy winds posed a challenge during the flight tests, not only for the devices, but also for the researchers involved," Kuenz reports. "Overall, the campaign was a successful step towards the urban mobility of tomorrow".
What does 'congested air traffic' mean and what are the limits? The same software modules for conflict detection and avoidance were used in these laboratory tests as during the flight tests in Cochstedt. The laboratory tests demonstrated that, using the systems developed in City-ATM, flight scenarios are possible in which up to 85 drones operate safely and efficiently at the same altitude in one square kilometre of airspace.
![]() ![]() ALIAS equipped Black Hawk helicopter completes first unmanned flight Washington DC (SPX) Feb 09, 2022 The DARPA Aircrew Labor In-Cockpit Automation System (ALIAS) program completed a first ever flight of a UH-60A Black Hawk helicopter without anyone onboard. Sikorsky, a Lockheed Martin company, completed 30-minutes of uninhabited flight with the optionally piloted vehicle (OPV) over the U.S. Army installation at Fort Campbell, Kentucky on February 5th. An additional uninhabited flight was also conducted on February 7th. The Black Hawk was retrofitted with Sikorsky MATRIX autonomy technologies that ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |