. Military Space News .
UAV NEWS
Drones take off in plant ecological research
by Staff Writers
Washington DC (SPX) Nov 02, 2016


This is a digital surface model of the vernal pool region of the Whetstone Savanna Preserve in southern Oregon generated from aerial images collected using a small drone. Image courtesy Mitchell B. Cruzan, Ben G. Weinstein, Monica R. Grasty, Brendan F. Kohrn, Elizabeth C. Hendrickson, Tina M. Arredondo, and Pamela G. Thompson. 2016. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology. Applications in Plant Sciences 4(9): 1600041. doi:10.3732/apps.1600041. For a larger version of this image please go here.

Long-term, broad-scale ecological data are critical to plant research, but often impossible to collect on foot. Traditional data-collection methods can be time consuming or dangerous, and can compromise habitats that are sensitive to human impact. Micro-unmanned aerial vehicles (UAVs), or drones, eliminate these data-collection pitfalls by flying over landscapes to gather unobtrusive aerial image data.

A new review in a recent issue of Applications in Plant Sciences explores when and how to use drones in plant research. "The potential of drone technology in research may only be limited by our ability to envision novel applications," comments Mitch Cruzan, lead author of the review and professor in the Department of Biology at Portland State University.

Drones can amass vegetation data over seasons or years for monitoring habitat restoration efforts, monitoring rare and threatened plant populations, surveying agriculture, and measuring carbon storage. "This technology," says Cruzan, "has the potential for the acquisition of large amounts of information with minimal effort and disruption of natural habitats."

For some research questions, drone surveys could be the holy grail of ecological data. Drone-captured images can map individual species in the landscape depending on the uniqueness of the spectral light values created from plant leaf or flower colors. Drones can also be paired with 3D technology to measure plant height and size. Scientists can use these images to study plant health, phenology, and reproduction, to track disease, and to survey human-mediated habitat disturbances.

Researchers can fly small drones along set transects over study areas of up to 40 hectares in size. An internal GPS system allows drones to hover over pinpointed locations and altitudes to collect repeatable, high-resolution images. Cruzan and colleagues warn researchers of "shadow gaps" when collecting data. Taller vegetation can obscure shorter vegetation, hiding them from view in aerial photographs. Thus, overlapping images are required to get the right angles to capture a full view of the landscape.

The review lists additional drone and operator requirements and desired features, including video feeds, camera stabilization, wide-angle lenses for data collection over larger areas, and must-have metadata on the drone's altitude, speed, and elevation of every captured image.

After data collection, georeferenced images are stitched together into a digital surface model (DSM) to be analyzed (see Figure). GIS and programming software classify vegetation types, landscape features, and even individual species in the DSMs using manual or automated, machine-learning techniques.

To test the effectiveness of drones, Cruzan and colleagues applied drone technology to a landscape genetics study of the Whetstone Savanna Preserve in southern Oregon, USA. "Our goal is to understand how landscape features affect pollen and seed dispersal for plant species associated with different dispersal vectors," says Cruzan.

They flew drones over vernal pools, which are threatened, seasonal wetlands. They analyzed the drone images to identify how landscape features mediate gene flow and plant dispersal in these patchy habitats. Mapping these habitats manually would have taken hundreds of hours and compromised these ecologically sensitive areas.

Before drones, the main option for aerial imaging data was light detection and ranging (LiDAR). LiDAR uses remote sensing technology to capture aerial images. However, LiDAR is expensive, requires highly specialized equipment and flyovers, and is most frequently used to capture data from a single point in time.

"LIDAR surveys are conducted at a much higher elevation, so they are not useful for the more subtle differences in vegetation elevation that higher-resolution, low-elevation drone surveys can provide," explains Cruzan.

Some limitations impact the application of new drone technology. Although purchasing a robotic drone is more affordable than alternative aerial imaging technologies, initial investments can exceed US$1,500.

Also, national flight regulations still limit drone applications in some countries because of changing licensing regulations and restricted flight elevations and flyovers near or on private lands. Also, if researchers are studying plant species that cannot be identified in aerial images using spectral light values, data collection on foot is required.

Despite limitations, flexibility is the biggest advantage to robotic drone research, says Cruzan. If the scale and questions of the study are ripe for taking advantage of drone technology, then "using a broad range of imaging technologies and analysis methods will improve our ability to detect, discriminate, and quantify different features of the biotic and abiotic environment."

As drone research increases, access to open-source analytical software programs and better equipment hardware will help researchers harness the advantages of drone technology in plant ecological research.

Research paper: Mitchell B. Cruzan, Ben G. Weinstein, Monica R. Grasty, Brendan F. Kohrn, Elizabeth C. Hendrickson, Tina M. Arredondo, and Pamela G. Thompson. 2016. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology. Applications in Plant Sciences 4(9): 1600041. doi:10.3732/apps.1600041.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Botanical Society of America
UAV News - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
UAV NEWS
Airbus Helicopters, DCNS team for future helicopter drone
Paris (UPI) Oct 21, 2016
French naval defense company DCNS and Airbus Helicopters are to pool their expertise to design a future helicopter drone system for the French navy. The system will be developed around Airbus' VSR700 drone, utilizing various technologies needed for drones to perform aerial missions, such as data liaison, and payload capability. The VSR700 is derived from a light civil helicopter, ... read more


UAV NEWS
Yemen rebel missile shot down near Mecca: coalition

US to deploy missile defense to South Korea 'soon'

China, Russia blast US missile defence at regional forum

Raytheon to update the Netherlands' Patriot missile system

UAV NEWS
Raytheon receives Rolling Airframe Missile contract modification

BAE receives max $600 million U.S. Navy contract for laser-guided rockets

Safran's Sigma 40 integrates with Harpoon missile system

Lithuania signs missile agreement with Norway

UAV NEWS
Drones take off in plant ecological research

Iran unveils 'suicide drone'

Airbus Helicopters, DCNS team for future helicopter drone

Silent Falcon and MicroPilot succeed at NASA UTM 2016

UAV NEWS
Lockheed Martin gets $92 million military satellite contract modification

Russia develops new satellite communication system for military use

Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

UAV NEWS
New Centauro II armored vehicle unveiled

Thales targeting pod integrated, tested on Rafale fighter

U.S. Army patents new blast debris protection system

GenDyn unit to support U.S. Special Operations

UAV NEWS
Pentagon suspends clawback of decade-old enlistment bonuses

Saab buys Danish defense company

Airbus protests furiously over Poland's handling of chopper deal

Egypt military seen as expanding economic share

UAV NEWS
Firm that built islands gets Philippines deal

China, Philippines in 'friendly' understanding on shoal: official

India, Japan eye deeper defence ties to counter China

Chinese state media urge new status for Xi

UAV NEWS
Researchers nearly reached quantum limit with nanodrums

Nanoantenna lighting-rod effect produces fast optical switches

Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.