. | . |
How to keep drones flying when a motor fails by Staff Writers Zurich, Switzerland (SPX) Feb 24, 2021
As anxious passengers are often reassured, commercial aircrafts can easily continue to fly even if one of the engines stops working. But for drones with four propellers - also known as quadcopters - the failure of one motor is a bigger problem. With only three rotors working, the drone loses stability and inevitably crashes unless an emergency control strategy sets in. Researchers at the University of Zurich and the Delft University of Technology have now found a solution to this problem: They show that information from onboard cameras can be used to stabilize the drone and keep it flying autonomously after one rotor suddenly gives out. "When one rotor fails, the drone begins to spin on itself like a ballerina," explains Davide Scaramuzza, head of the Robotics and Perception Group at UZH and of the Rescue Robotics grand challenge at NCCR Robotics, which funded the research. "This high-speed rotational motion causes standard controllers to fail unless the drone has access to very accurate position measurements." In other words, once it starts spinning, the drone is no longer able to estimate its position in space and eventually crashes. One way to solve this problem is to provide the drone with a reference position through GPS. But there are many places where GPS signals are unavailable. In their study, the researchers solved this issue for the first time without relying on GPS, instead using visual information from different types of onboard cameras.
Event cameras work well in low light The research team developed algorithms that combine information from the two sensors and use it to track the quadrotor's position relative to its surroundings. This enables the onboard computer to control the drone as it flies - and spins - with only three rotors. The researchers found that both types of cameras perform well in normal light conditions. "When illumination decreases, however, standard cameras begin to experience motion blur that ultimately disorients the drone and crashes it, whereas event cameras also work well in very low light," says first author Sihao Sun, a postdoc in Scaramuzza's lab.
Increased safety to avoid accidents
Research Report: Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events
Commercial 1-ton cargo delivery glider to be scaled down for expanded military operations Los Angeles CA (SPX) Feb 17, 2021 Silent Arrow reports that the US Air Force has awarded contract FA864921P0478 entitled "Feasibility of Downsizing and Adapting Commercial Silent Arrow Cargo Delivery UAS to Meet Specific AFSOC Operational Requirements" to the company effective February 5, 2021. The contract will be executed in partnership with the Air Force Research Laboratory (AFRL) with funding from AFWERX. Under this Small Business Innovation Research ("SBIR") contract, the commercially successful Silent Arrow GD-2000 (Glider, ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |