. Military Space News .
MILITARY COMMUNICATIONS
Improving 5G Network Security
by Staff Writers
Washington DC (SPX) Feb 10, 2020

This image visually represents the vision and research objectives of the OPS-5G program. OPS-5G's goal is to develop a portable, standards-compliant network stack for 5G mobile that is free, open source, and secure by design.

Emerging 5G mobile wireless networking technologies are slated to dramatically increase in both scale and speed, enabling much faster access to data collected from billions of connected devices. This supercharged information highway is envisioned to play an important role across several industries, ranging from medicine to manufacturing.

Major advances in 5G, including new core network features will make it easier to customize the network at a wide variety of locations. This new flexibility offers many benefits, but at the same time introduces novel security challenges. Today's proprietary 5G technologies make it difficult to achieve the transparency necessary for security-related risk analysis and mitigation. This lack of security assurance makes it harder to deploy these technologies for defense capabilities.

"As networks are simultaneously critical infrastructure and the means used for cyberespionage and cyberwarfare, finding ways to bolster their security is critically important," said DARPA program manager, Dr. Jonathan Smith. "The rapid increase in the scale of 5G networks, as well as issues from unmanaged or forgotten Internet of Things (IoT) devices and unwanted interactions between network slices, create security risks that must be addressed."

DARPA created the Open, Programmable, Secure 5G (OPS-5G) program to tackle many of the security challenges facing future wireless networks. OPS-5G will explore the development of a portable, standards-compliant network stack for 5G mobile networks that is open source, and secure by design. The program seeks to enable a "plug-and-play" approach to various network software and hardware components, which reduces reliance on untrusted technology sources. The goal of OPS-5G is to develop open source software and systems that can enable more secure 5G as well as future generations of networks beyond 5G.

The signature security advantage of open source (OS) software is increased code visibility, meaning that code can be examined, analyzed, and audited manually and, more fruitfully, with automated tools by multiple parties. Another benefit is open source software's portability, which allows the software to run on both OS and proprietary hardware. This decoupling of the hardware and software ecosystems makes it easier to introduce innovations while raising the difficulty of some malicious attacks.

Further, it helps open the 5G market to smaller players and innovators. However, creating open source software elements typically requires the collaborative development of well-defined standards. The standards creation process can be slow and arduous - one that a rapidly-progressing technology such as 5G can't afford. To help accelerate the development of 5G-relevant open source software from standards, OPS-5G will explore the use of machine translation to increase code development velocity and help make standards easier to understand.

One of the many benefits of 5G is powering a vast and growing ecosystem of IoT devices. The security across these devices, however, is disparate, as is their size, weight, and power (SWaP). Today, IoT security features are viewed as optional, which does not bode well for their use within defense systems.

To bolster security around this growing mesh of technologies, OPS-5G will explore the development of cost-effective SWaP-conscious cryptography with scalable security protocols. The program will look to existing technologies to support this process, like the many-to-many end-to-end encryption protocol developed by researchers at the University of California, Berkeley, called Joining Encryption and Delegation for IoT.

Network elements used to support virtualization and the 5G network concept of application-customized "slices" share resources to achieve cost-effective performance. Amongst other risks, this resource sharing creates potential timing channel vulnerabilities. Opaque system ownership, operator policies, and software provenance also present security issues for 5G networks.

Currently, a multitude of large vendors provide carrier hardware, software, node provisioning, and more to enable 5G technologies. OPS-5G will explore breakthrough approaches for the enablement of secure network slices to provide security across the network resources provided by and shared with unknown entities. The program will explore novel ways to make trusted networks out of infrastructures with untrusted components.

Finally, OPS-5G will aim to address security challenges posed by 5G's programmability by hardening the execution. 5G is expected to have 60-600 billion nodes by 2023, which radically increases the risk of network attack. To increase network resiliency and enable faster adaptation to threats, OPS-5G will explore the development of programmable elements of 5G specifically for defense. Additional information is available in the OPS-5G Broad Agency Announcement, found here.

Image Caption: This image visually represents the vision and research objectives of the OPS-5G program. OPS-5G's goal is to develop a portable, standards-compliant network stack for 5G mobile that is free, open source, and secure by design.


Related Links
Defense Advanced Research Projects Agency
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILITARY COMMUNICATIONS
US Army and Air Force team up for multi-domain operations
White Sands Missile Range NM (SPX) Jan 22, 2020
Two U.S. Air Force F-35s were integrated with the U.S. Army Integrated Air and Missile Defense Battle Command System (IBCS), providing an airborne sensor capability to successfully detect, track and intercept near simultaneous air-breathing threats in a test at White Sands Missile Range, New Mexico. The December 2019 test marked the first time F-35s were used as sensors during an IBCS live fire test against multiple airborne targets. Linking F-35s to IBCS via the Multifunction Advanced Data ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
'Over in under a minute': commander divulges how quickly moscow's defences can thwart missile attack

Greece to send Patriot missiles to Saudi Arabia: official

US awaits Iraq's okay to deploy Patriots to protect troops

Lockheed nabs $114M deal to deliver Patriot missiles to UAE

MILITARY COMMUNICATIONS
Iran unveils ballistic missile, 'new generation' engines

U.S. approves deal to sell LRASMs to Australia for up to $990M

Ukraine says Iran 'knew from start' missile downed plane

New footage shows Iranian missiles hitting Ukraine plane

MILITARY COMMUNICATIONS
Northrop Grumman nabs $172.4M for two MQ-4C drones to Navy

Phase One Industrial and AI-Survey GmbH Sign Partner Integrator Agreement

Extended range: VECTOR flies beyond 300 km using a UHF datalink

Researchers develop new bio-inspired wing design for small drones

MILITARY COMMUNICATIONS
Improving 5G Network Security

US Army and Air Force team up for multi-domain operations

NASA's Laser Communications Relay Demonstration Mission Leaves Goddard Space Flight Center

Protecting wideband RF systems in congested electromagnetic environments

MILITARY COMMUNICATIONS
Trump lifts US restrictions on anti-personnel landmines

Pentagon to roll back restrictions on land mine use

US plans to relax restrictions on landmines

41st Field Artillery Brigade conducts live fire exercise in Germany

MILITARY COMMUNICATIONS
Modi eyes arms export tag in 'Made in India' push

Suspected Saudi weapons ships arrives in France; Belgium's Wallonia region bans Saudi arms sales

China air force to appear at Singapore show despite virus

Russia obtains ease on C.Africa arms embargo at UN Security Council

MILITARY COMMUNICATIONS
Greece aims to outflank Turkey in Mediterranean

US has lost its 'moral leadership,' actor Harrison Ford says

Russia not target in US army's massive Europe deployment: NATO

UN marks 75th anniversary year in world of distrust, shifting power

MILITARY COMMUNICATIONS
Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light

A quantum breakthrough brings a technique from astronomy to the nano-scale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.