. | . |
MUOS Satellite Now Supporting Troops with Ultra High Frequency Communications by Staff Writers Sunnyvale, CA (SPX) Apr 26, 2017
The fifth Lockheed Martin-built Mobile User Objective System (MUOS-5) satellite is now delivering secure, beyond-line-of-sight communications to troops with legacy Ultra High Frequency (UHF) radios. The U.S. Navy, working with Army Forces Strategic Command, configured one of MUOS-5's two communications payloads - its legacy UHF payload - to provide additional support for the Navy's legacy UHF satellite communications mission. Today, narrowband UHF communications is used by every Combatant Command in aircraft, ships, submarines, ground vehicles, as well as by troops in the field and special operations. Eventually, legacy narrowband UHF communications will transition to next generation Wideband Code Division Multiple Access (WCDMA) capabilities provided by MUOS. To facilitate that transition, MUOS was intentionally designed with two communications payloads. "Each MUOS satellite can simultaneously support both new WCDMA waveform capabilities and legacy UHF satellite communications," explained Mark Woempner, director of Narrowband Communications Systems at Lockheed Martin. "With MUOS 1-4 already on orbit providing near global WCDMA coverage, MUOS-5 will actively support legacy UHF communications and serve as an on-orbit WCDMA spare." MUOS-5 is the latest edition to a network of orbiting satellites and relay ground stations that is revolutionizing communications for mobile forces. Users with new MUOS terminals will be able to seamlessly connect beyond line-of-sight around the world and into the Global Information Grid, as well as into the Defense Switched Network. MUOS' capabilities include simultaneous, crystal-clear voice, video and mission data over a secure high-speed Internet Protocol-based system. More than 55,000 currently fielded radio terminals can be upgraded to be MUOS-compatible, with many of them requiring just a software upgrade. Once fully operational, MUOS will provide users with more than 10 times the communications capacity of the legacy system it will replace. The network provides near-global coverage, including communications into polar regions. MUOS also has demonstrated successful communication of Integrated Broadcast Service (IBS) messages to in-flight test aircraft. "The industry team for MUOS is an incredible partnership. Next for MUOS, we are laser-focused on bringing the complete system to full operational capability for the Navy," said Woempner. "Early combatant commander testing began in July 2016, and we have already received valuable user feedback and are working to rapidly incorporate their needs into the system." MUOS-5 begins this transition after successful completing post-launch, on-orbit testing on January 19. The satellite completed orbit raising and successfully deployed its solar arrays and antennas for mission operations on Oct. 30, 2016. Originally launched on June 24, 2016, MUOS-5 experienced an anomaly with its orbit raising propulsion system on its way to geosynchronous orbit. The Navy and Lockheed Martin engineering teams were able to isolate the issue and deliver MUOS to operational orbit using alternative propulsion. The Navy's Program Executive Office for Space Systems and its Communications Satellite Program Office responsible for the MUOS program are based in San Diego, California. Lockheed Martin assembled and tested all five now-on-orbit MUOS satellites at its Sunnyvale, California, facility.
Washington (UPI) Apr 25, 2017 The Marine Corps is setting up a pilot program to install Wi-Fi in its aviation hangars. The first such system started information at Marine Corps Air Station New River, North Carolina in January. Marine Corps Systems Command and Headquarters Marine Corps Command, Control, Communication and Computers, is overseeing the program. It is hoped that it will improve logistical capabilities su ... read more Related Links MUOS at Lockheed Martin Read the latest in Military Space Communications Technology at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |