. | . |
NASA's Laser Communications Relay Demonstration Mission Leaves Goddard Space Flight Center by Katherine Schauer for GSFC News Greenbelt MD (SPX) Feb 04, 2020
On Jan. 22, 2020, the Laser Communications Relay Demonstration (LCRD) flight payload was delivered to Northrop Grumman's facility in Sterling, Virginia. There the payload will be integrated onto the U.S. Air Force's Space Test Program Satellite 6 (STPSat-6) and prepared for launch. LCRD will be NASA's first end-to-end optical relay, sending and receiving data from missions in space to mission control on Earth. In the first image, you can see the LCRD space switching unit, which will enable digital communications from space to ground. This evolution to more internet-like communications will reduce the amount of processing required before data can be sent to science and mission operations centers. LCRD will demonstrate the robust capabilities of optical communications. The metallic surface pictured in the second image reflects incoming optical communications signals, relaying them to space or ground telescopes. Optical communications provides significant benefits for missions, including decreased size, weight and power requirements over comparable radio frequency communications systems, as well as bandwidth increases of 10 to 100 times more than radio frequency systems. The LCRD mission is funded through NASA's Space Technology Mission Directorate and the Human Exploration and Operations Mission Directorate, and managed by NASA's Technology Demonstration Missions and the Space Communications and Navigation program offices.
Protecting wideband RF systems in congested electromagnetic environments Washington DC (SPX) Jan 23, 2020 Today's electromagnetic (EM) spectrum is a scarce resource that is becoming increasingly congested and contested as friendly, unfriendly, and neutral entities vie for available spectrum resources at any given time, location, and frequency. Within the Department of Defense (DoD), radio frequency (RF) systems, such as communications networks and radar, must operate within this congested environment and contend with mission-compromising interference from both self- and externally generated signals. A ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |