. | . |
Observing the atmosphere at high altitudes using unmanned aerial vehicles by Staff Writers Beijing, China (SPX) Apr 16, 2020
Severe weather conditions such as low air temperatures and strong winds often bring difficulties to scientific expeditions in Antarctica. Thus, monitoring and forecasting the weather is critical. Soundings constitute one important way to observe the high-altitude atmosphere. This kind of observational data helps with analyzing and studying the atmospheric circulation and improving the accuracy of weather forecasts. In recent years, unmanned aerial vehicles (UAVs) have become ideal atmospheric sounding observation platforms. European and American countries have already tried to carry out drone sounding activities over the Arctic Svalbard Islands and the Antarctic Terra Nova Bay. "UAVs have many advantages for Antarctic atmospheric sounding observations." Said Dr. Qizhen Sun of the National Marine Environmental Forecasting Center (NMEFC) of China, "First of all, UAVs have good motility and can be used to observe specific weather systems at any time as needed; secondly, the single observation time of a UAV is generally around 20 minutes, making it particularly favorable for observing rapidly changing weather situations." Other advantages of a UAV include: UAV observation data have high vertical resolution with a sampling interval of fewer than five meters and the horizontal movement of UAV sounding observations is usually less than 200 meters - much smaller than traditional radiosondes. "Last but not the least, UAVs can be reused multiple times, reducing the overall costs." Said Sun. To test the value of atmospheric sounding observations from UAVs, Dr. Sun, Professor Timo Vihma of the Finnish Meteorological Institute and other meteorologists, evaluated the ability of such sounding data to improve Antarctic weather forecasting. Their findings are published in Advances in Atmospheric Sciences. They found that UAV sounding data can improve Antarctic weather forecasting to a certain extent, especially the prediction of temperature, wind speed, and humidity. Because the flight altitude of UAVs is generally below two kilometers, the improvement to the accuracy of meteorological prediction is mainly limited to the atmospheric boundary layer. Based on these experiments and studies, NMEFC plans to conduct more atmospheric sounding observation activities with UAVs in Antarctica, including aircraft meteorological observations over the Antarctic ice sheet and vertical structure observations of katabatic winds across the Ross Sea, Antarctica.
Sky Sapience introduces tethered UAV platform HoverMast Yokneam, Israel (SPX) Apr 14, 2020 Sky Sapience introduces its newest generation tethered UAV platform, HoverMast- Lite (HM-L1 and HM-L3.) Designed to function as smaller, light-weight versions of their flagship HoverMast platform, the HM-L systems will be used in tandem with small robotic vehicles participating in the RCV/SMET programs. The HM-L systems maintain the impressive capabilities of the original HoverMast product line; such as 100m hovering, 24/7/365, autonomous, on the move, bad weather operations, fiber optic communica ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |