![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Binghamton NY (SPX) May 27, 2020
Using advanced machine learning, drones could be used to detect dangerous "butterfly" landmines in remote regions of post-conflict countries, according to research from Binghamton University, State University at New York. Researchers at Binghamton University had previously developed a method that allowed for highly accurate detection of "butterfly" landmines using low-cost commercial drones equipped with infrared cameras. Their new research focuses on automated detection of landmines using convolutional neural networks, the standard machine learning method for object detection and classification in the field of remote sensing. This method is a game-changer in the field, said Alek Nikulin, assistant professor of energy geophysics at Binghamton University. "All our previous efforts relied on human-eye scanning of the dataset," said Nikulin. "Rapid drone assisted mapping and automated detection of scatterable mine fields would assist in addressing the deadly legacy of widespread use of small scatterable landmines in recent armed conflicts and allow to develop a functional framework to effectively address their possible future use." It is estimated that there are at least 100 million military munitions and explosives of concern devices in the world, of various size, shape and composition. Millions of these are surface plastic landmines with low-pressure triggers, such as the mass-produced Soviet PFM-1 "butterfly" landmine. Nicknamed for their small size and butterfly-like shape, these mines are extremely difficult to locate and clear due to their small size, low trigger mass and, most significantly, a design that mostly excluded metal components, making these devices virtually invisible to metal detectors. Critically, the design of the mine combined with a low triggering weight have earned it notoriety as "the toy mine," due to a high casualty rate among small children who find these devices while playing and who are the primary victims of the PFM-1 in post-conflict nations, like Afghanistan. The researchers believe that these detection and mapping techniques are generalizable and transferable to other munitions and explosives of concern. For example, they could be adapted to detect and map disturbed soil for improvised explosive devices (IEDs). "The use of Convolutional Neural Network (CNN) based approaches to automate the detection and mapping of landmines is important for several reasons," wrote the researchers. "One, it is much faster than manually counting landmines from an orthoimage (i.e. an aerial image that has been geometrically corrected). Two, it is quantitative and reproducible, unlike subjective human error prone ocular detection. And three, CNN based methods are easily generalizable to detect and map any objects with distinct sizes and shapes from any remotely sensed raster images."
Research Report: "Applying Deep Learning to Automate UAV-Based Detection of Scatterable Landmines"
![]() ![]() How drones can monitor explosive volcanoes Potsdam, Germany (SPX) May 26, 2020 Due to the difficult accessibility and the high risk of collapse or explosion, the imaging of active volcanoes has so far been a great challenge in volcanology. Researchers around Edgar Zorn from the German Research Centre for Geosciences GFZ in Potsdam are now presenting the results of a series of repeated survey flights with optical and thermal imaging cameras at the Santa Maria volcano in Guatemala. Drones were used to observe the lava dome, a viscous plug of lava. The researchers were able to ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |