. | . |
RocketStar set to launch TriSept satellite security solution aboard experimental payloads by Staff Writers Chantilly VA (SPX) Aug 10, 2022
TriSept Corporation, a leading provider of launch integration and mission management services, has completed the integration of two experimental mission payloads running its new TSEL satellite security operating software for a suborbital test flight aboard RocketStar's launch vehicle set to liftoff from the Koehn Lake Bed in the Mojave Desert. TriSept has teamed with RocketStar and its 40-foot-tall, aerospike-powered Cowbell rocket to further lower barriers to space for commercial, government and experimental missions, like the payloads the University of Central Florida and Brigham Young University will launch and study in September. "This is the first in a series of suborbital flights aboard our RocketStar Cowbell launch vehicle, with each mission powered by the Aerospike engine designed to achieve more altitude and flight data as we build toward our first orbital insertion mission on our larger launch vehicle in 2023," said Chris Craddock, RocketStar CEO. "RocketStar is thrilled to partner with the experienced TriSept launch and integration team, as we roll in our portable launch facility and throw open the door even wider to affordable and reliable small sat access to space." A small team of UCF students will be closely studying their payload mission, which will simulate asteroid particle activity in space during the thirteen-minute flight. They will examine a collection of colliding particles inside a device they've named the entrapulator, after a similar payload the university has flown on the International Space Station and other vehicles. The UCF mission aims to shed more light on collisions in the protoplanetary nebula and the evolution of loose materials or regolith on the surface of asteroids during such an impact. Brigham Young University's College of Engineering students have designed a sensor package dubbed Motron II that will measure motion, acceleration and vibration aboard the launch vehicle and help mission operators better understand and design for launches of small payloads. In addition to the rich scientific and technical data both university teams expect to harvest from their missions, they are also excited to explore the valuable findings from the first suborbital tests of TriSept's new satellite security operating system. "This experiment is providing a new batch of students the chance to interface and gain invaluable real-world experience with seasoned engineers in the space industry," said Dr. David Long, an Engineering Professor with the BYU Center for Remote Sensing. "We are excited to work with TriSept and RocketStar to put our flight motion payload to the test and to work with flight-grade security software on its maiden voyage in space." "Our students are always thrilled to launch a mission into space. TriSept opened the door to this great opportunity for our students to participate in the integration and launch of our payload aboard the RocketStar rocket," said Josh Colwell, a UCF Physics Professor whose students at the Stephen W. Hawking Center for Microgravity Research and Education have developed the mission studying asteroids. "We are also incredibly excited to be among the first involved in the milestone tests of new satellite security software that could help pave the way to a new level of protected missions in space." "TriSept is passionate about opening up safe space access to everyone, including students who often can only dream about getting their experimental missions aboard a rocket and launched into space," said Jason Armstrong, TriSept's Director of Launch and Integration Services. "Our focus will be on supporting two experimental missions and the inaugural flight of our new TSEL satellite security operating system running on both university payload missions. It's another step toward securing small satellite operations with a new protection solution that is now commercially available." The TriSept Secure Embedded Layer (TSEL) operating system, capable of detecting, tracking and eliminating known and emerging vulnerabilities on conventional and small satellites, will undergo a series of environmental and operational tests during the thirteen-minute mission to the edge of space. "This is an exciting collaborative and multi-faceted mission for two innovative companies determined to transform space access, making it simpler and more affordable for small sat missions looking for both shared and dedicated rides into orbit," said Rob Spicer, TriSept Founder and CEO. "It's a historic launch of firsts - the inaugural RocketStar launch vehicle carrying a pair of experimental missions and TriSept's TSEL operating system is on the verge of making satellite missions and the company's depending on them more secure from this day forward." TriSept's TSEL was developed to meet rising demand across the satellite industry for a managed cybersecurity solution that secures an embedded device much like a terrestrial server is protected. TSEL offers a series of automated mechanisms and updates that deliver far more detailed audit data, near-real-time security analysis and patch updates along with "zero trust" verification layers that protect against hackers and provide an accurate account of what's happening aboard the satellite at all times. A rising number of attacks on critical infrastructure across the U.S. and the world have shown just how vulnerable spacecraft can be, especially as the vast majority of small satellites launched into orbit are ill prepared to protect themselves in the event of adversarial threats.
Russia launches Iranian satellite amid Ukraine war concerns Almaty, Kazakhstan (AFP) Aug 10, 2022 An Iranian satellite launched by Russia blasted off from Kazakhstan Tuesday and reached orbit amid controversy that Moscow might use it to boost its surveillance of military targets in Ukraine. As Russia's international isolation grows following Western sanctions over its invasion of Ukraine, the Kremlin is seeking to pivot towards the Middle East, Asia and Africa and find new clients for its embattled space programme. Speaking at the Moscow-controlled Baikonur Cosmodrome in the Kazakh steppe, R ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |