. Military Space News .
MILITARY COMMUNICATIONS
Satellite study proves global quantum communication will be possible
by Staff Writers
Washington DC (SPX) Dec 21, 2018

file illustration

Researchers in Italy have demonstrated the feasibility of quantum communications between high-orbiting global navigation satellites and a ground station, with an exchange at the single photon level over a distance of 20,000km.

The milestone experiment proves the feasibility of secure quantum communications on a global scale, using the Global Navigation Satellite System (GNSS). It is reported in full in the journal Quantum Science and Technology.

Co-lead author Dr Giuseppe Vallone is from the University of Padova, Italy. He said: "Satellite-based technologies enable a wide range of civil, scientific and military applications like communications, navigation and timing, remote sensing, meteorology, reconnaissance, search and rescue, space exploration and astronomy.

"The core of these systems is to safely transmit information and data from orbiting satellites to ground stations on Earth. Protection of these channels from a malicious adversary is therefore crucial for both military and civilian operations.

"Space quantum communications (QC) represent a promising way to guarantee unconditional security for satellite-to-ground and inter-satellite optical links, by using quantum information protocols as quantum key distribution (QKD)."

The team's results show the first exchange of a few photons per pulse between two different satellites in the Russian GLONASS constellation and the Space Geodesy Centre of the Italian Space Agency.

Co-lead author Professor Paolo Villoresi said: "Our experiment used the passive retro-reflectors mounted on the satellites. By estimating the actual losses of the channel, we can evaluate the characteristics of both a dedicated quantum payload and a receiving ground station.

"Our results prove the feasibility of QC from GNSS in terms of achievable signal-to-noise ratio and detection rate. Our work extends the limit of long-distance free-space single-photon exchange. The longest channel length previously demonstrated was around 7,000 km, in an experiment using a Medium-Earth-Orbit (MEO) satellite that we reported in 2016."

Although high-orbit satellites pose a large technological challenge, due to losses from optical channels, Professor Villoresi explained the team's reasoning for focussing on high-orbiting satellites in their study.

He said: "The high orbital speed of low earth orbit (LEO) satellites is very effective for the global coverage but limits their visibility periods from a single ground station. On the contrary, using satellites at higher orbits can extend the communication time, reaching few hours in the case of GNSS.

"QC could also offer interesting solutions for GNSS security for both satellite-to-ground and inter-satellite links, which could provide novel and unconditionally secure protocols for the authentication, integrity and confidentiality of exchanged signals."

Dr. Giuseppe Bianco, which is the Director of the Space Geodesy Centre of the Italian Space Agency and co-author, said "The single photon exchange with a GNSS satellite is an important result for both scientific and application perspectives. It fits perfectly in the Italian roadmap for Space Quantum Communications, and it is the latest achievement of our collaboration with the University of Padua which is steadily progressing since 2003."

Research paper


Related Links
IOP Publishing
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILITARY COMMUNICATIONS
AFSPC assumes COMSATCOM procurement responsibility for DoD
Peterson AFB, Colo. (AFNS) Dec 14, 2018
The Air Force Space Command commander assumed responsibility for procurement of commercial satellite communications services for the Department of Defense from the Director of the Defense Information Systems Agency December 12. The move is in accordance with Section 1601(a) of the Fiscal Year 2018 National Defense Authorization Act. This transfer means AFSPC will oversee procurement of nearly all military and commercial SATCOM for the DoD, and will allow it to manage SATCOM as an enterprise, integ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
US approves $3.5 billion Patriot missile sale to Turkey

Pentagon conducts latest successful test of US-Japan interceptor

Aegis Combat System demonstrates success during on-land test against Intermediate Range Ballistic Missile

Navy to purchase new containers for air defense missiles

MILITARY COMMUNICATIONS
Navy contracts Orbital for Coyote missile trainers

Long Range Anti-Ship Missile reaches early operational capability status on B-1B bombers

Northrop Grumman receives $3.6B contract for infrared missile countermeasures

Lockheed contracted for three LRASM missiles

MILITARY COMMUNICATIONS
New foldable drone can navigate narrow holes

General Atomics receives $40 million for Gray Eagle drone services

Using drones to simplify film animation

General Atomics tapped for French MQ-9 drone support

MILITARY COMMUNICATIONS
AFSPC assumes COMSATCOM procurement responsibility for DoD

US Space Force Takes Over Satellite Purchases to Boost Warfighter Communication

Shape-shifting origami could help antenna systems adapt on the fly

Global Ku-Band HTS platform provides government customers with unprecedented solutions

MILITARY COMMUNICATIONS
Army taps BAE, GenDyn for armored fighting vehicle prototypes

White House asks top court to block transgender military service

Contract put forward for MK80 and BLUE-109 components

Squad X Improves Situational Awareness, Coordination for Dismounted Units

MILITARY COMMUNICATIONS
Canada mulls canceling Saudi arms deal over Yemen, Kashoggi murder

Spain announces 7.3-bn-euro defence spending plan

Slovakia seals its largest-ever arms deal

Russia now world's No. 2 in arms sales, report shows

MILITARY COMMUNICATIONS
US urges Bosnia to stay on NATO path

Third Canadian held for working in China illegally

China detains third Canadian as Huawei spat simmers

Trump pulls back from Middle East as Putin rejoices

MILITARY COMMUNICATIONS
Pitt chemical engineers develop new theory to build improved nanomaterials

MIT team invents method to shrink objects to the nanoscale

Artificial synapses made from nanowires

How microscopic machines can fail in the blink of an eye









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.