. | . |
Scientists designed an instrument to identify unexploded artillery shells by Staff Writers Helsinki, Finland (SPX) Dec 19, 2017
These detection systems should be non-destructive but still be able to detect and identify the threat objects, even from inside a shielding or masking enclosure. Active interrogation methods that use penetrative particle beams can reveal the presence of CBRNE materials. "In prompt gamma neutron activation analysis (PGNAA), an unknown object is exposed to a high neutron flux and the outgoing prompt gamma radiation is measured with a high energy resolution gamma spectrometer. The emitted gamma rays are isotope-specific, so gamma neutron activation analysis can be used to detect the presence of nearly all elements," says Dr. Camille Belanger-Champagne from the Helsinki Institute of Physics (HIP) at the University of Helsinki. She is a physicist in the NINS3 research team that recently published in PLOS ONE their work on instruments for active neutron interrogation of unexploded artillery shells. The relative intensity of the gamma ray peaks in the energy spectrum can be used to measure the relative fractions of elements inside the unknown target. Applications of the PGNAA technique exist in many contexts, and specialized systems are designed based on the materials, elements and isotopes that must be identified in each application. In the subset of applications that focus on military ordnance, explosives and chemical weapons are the principal identification targets inside unknown objects. The ratio of the main gamma-ray peaks of hydrogen and nitrogen can be used to identify the presence of high explosives. The gamma-ray signal from arsenic, fluorine, phosphorus, sulfur and chlorine is needed to identify chemical weapons. The most common explosives can be uniquely identified by measuring the elemental hydrogen/nitrogen ratio with a precision better than 10 per cent.
A precise timing instrument with an intense pulsed neutron generator "Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding," Dr. Camille Belanger-Champagne says. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53 per cent to 74 per cent for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1 per cent within 30 minutes. In this project, researchers from HIP have partnered with an accelerator technology company, JHV Physics and a nuclear safety training and consulting company, HT Nuclear to design the new instrument for gamma neutron activation analysis of artillery shells. JHV Physics is developing a next generation neutron generator with a high intensity beam and precisely timed neutron pulses. A prototype instrument has been built and commissioning of the newly designed instrument is ongoing.
Washington (UPI) Dec 6, 2017 Nearly one in five British army troops cannot perform full combat duties because of illness, injuries or other reasons, news reports from England said. /> Of the 18,000 active-duty troops affected, only about 10,000 could only take part in certain combat operations. Conservative Member of Parliament, Andrew Bowie, a former naval officer, uncovered the figures through a written ... read more Related Links University of Helsinki The latest in Military Technology for the 21st century at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |