. Military Space News .
MILITARY COMMUNICATIONS
Secure communication with light particles
by Staff Writers
Darmstadt, Germany (SPX) May 26, 2022

stock illustration only

The new system is used to exchange symmetric keys between parties in order to encrypt messages so that they cannot be read by third parties. In cooperation with Deutsche Telekom, the researchers led by physics professor Thomas Walther succeeded in operating a quantum network that is scalable in terms of the number of users and at the same time robust without the need for trusted nodes. In the future, such systems could protect critical infrastructure from the growing danger of cyberattacks. In addition, tap-proof connections could be installed between different government sites in larger cities.

The system developed by the Darmstadt researchers enables the so-called quantum key exchange, providing several parties in a star-shaped network with a common random number. Individual light quanta, so-called photons, are distributed to users in the communication network in order to calculate the random number and thus the digital key. Due to quantum physical effects, these keys are particularly secure. In this way, communication is particularly highly protected, and existing eavesdropping attacks can be detected.

So far, such quantum key methods have been technically complex and sensitive to external influences. The system of the Darmstadt group from the Collaborative Research Center CROSSING is based on a special protocol. The system distributes photons from a central source to all users in the network and establishes the security of the quantum keys through the effect of so-called quantum entanglement. This quantum-physical effect produces correlations between two light particles, which are observable even when they are far apart. The property of the partner particle can be predicted by measuring a property of the light particle from a pair.

Polarization is often used as a property, but this is typically disturbed in the glass fibers used for transmission due to environmental influences such as vibrations or small temperature changes. However, the Darmstadt system uses a protocol in which the quantum information is encoded in the phase and arrival time of the photons and is therefore particularly insensitive to such disturbances. For the first time, the group has succeeded in providing a network of users with quantum keys by means of this robust protocol.

The high stability of the transmission and the scalability in principle were successfully demonstrated in a field test together with Deutsche Telekom Technik GmbH. As a next step, the researchers at TU Darmstadt are planning to connect other buildings in the city to their system.

Research Report:Scalable network for simultaneous pairwise quantum key distribution via entanglement-based time-bin coding


Related Links
Technische Universitat
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILITARY COMMUNICATIONS
Dutch researchers teleport quantum information across rudimentary quantum network
Delft, Netherlands (SPX) May 26, 2022
Researchers in Delft have succeeded in teleporting quantum information across a rudimentary network. This first of its kind is an important step towards a future quantum Internet. This breakthrough was made possible by a greatly improved quantum memory and enhanced quality of the quantum links between the three nodes of the network. The researchers, working at QuTech-a collaboration between Delft University of Technology and the Netherlands Organisation for Applied Scientific Research (TNO)-are publishi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
Belarus buys S-400, Iskander missiles from Russia: Lukashenko

Turkey says still talking to Russia about missile deliveries

Lockheed Martin to produce 8th THAAD Battery for US Govt

Northrop Grumman to develop next-generation relay ground station for US Navy in Pacific

MILITARY COMMUNICATIONS
Raytheon Missiles and Defense awarded $624 million for Stinger missile production

Russia says carried out hypersonic missile test

Biden rules out sending rocket systems 'that can strike into Russia' to Ukraine

DOD focused on hypersonic missile defense development, Admiral Says

MILITARY COMMUNICATIONS
Iran unveils underground drone base

Turkey shows off drones at Azerbaijan air show

From drones to sensors, Malaysian durian grower goes high-tech

US Navy deploys MQ-8C Fire Scout to Indo-Pacific

MILITARY COMMUNICATIONS
Dutch researchers teleport quantum information across rudimentary quantum network

MINC Program Aims to Enable Critical Data Flow Even in Contested Environments

Secure communication with light particles

Space Rapid Capabilities Office awards $1.4B effort to BlueHalo

MILITARY COMMUNICATIONS
More defence spending needed to face Russia threat: Spain

Germany agrees $107 bn fund to modernise army amid Russia threat

The AR-15 and America's love of military-style weapons

Germany agrees $107 bn fund to modernise military in face of Russia threat

MILITARY COMMUNICATIONS
Prague to get German tanks in exchange for Ukraine aid

France to step up arms supplies to Ukraine, Macron tells Zelensky

Experts warn arms for Ukraine could end up in wrong hands

EU hikes military aid for Ukraine as NATO expansion faces roadblocks

MILITARY COMMUNICATIONS
Philippines summons Beijing diplomat over South China Sea 'harassment'

Denmark votes on scrapping EU defence opt-out

NATO has right to deploy in eastern Europe: deputy chief

As Sweden woos Turkey, fears mount over what it will cede

MILITARY COMMUNICATIONS
New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

Seeing more deeply into nanomaterials

Atom by atom: building precise smaller nanoparticles with templates









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.