. | . |
Stealth material hides hot objects from infrared eyes by Staff Writers Madison WI (SPX) Jun 26, 2018
Infrared cameras are the heat-sensing eyes that help drones find their targets even in the dead of night or through heavy fog. Hiding from such detectors could become much easier, thanks to a new cloaking material that renders objects - and people - practically invisible. "What we have shown is an ultrathin stealth 'sheet.' Right now, what people have is much heavier metal armor or thermal blankets," says Hongrui Jiang, professor of electrical and computer engineering at the University of Wisconsin-Madison. Warm objects like human bodies or tank engines emit heat as infrared light. The new stealth sheet, described this week in the research journal Advanced Engineering Materials, offers substantial improvements over other heat-masking technologies. "It's a matter of the weight, the cost and ease of use," says Jiang. Less than one millimeter thick, the sheet absorbs approximately 94 percent of the infrared light it encounters. Trapping so much light means that warm objects beneath the cloaking material become almost completely invisible to infrared detectors. Importantly, the stealth material can strongly absorb light in the so-called mid- and long-wavelength infrared range, the type of light emitted by objects at approximately human body temperature. By incorporating electronic heating elements into the stealth sheet, the researchers have also created a high-tech disguise for tricking infrared cameras. "You can intentionally deceive an infrared detector by presenting a false heat signature," says Jiang. "It could conceal a tank by presenting what looks like a simple highway guardrail." To trap infrared light, Jiang and colleagues turned to a unique material called black silicon, which is commonly incorporated into solar cells. Black silicon absorbs light because it consists of millions of microscopic needles (called nanowires) all pointing upward like a densely-packed forest. Incoming light reflects back and forth between the vertical spires, bouncing around within the material instead of escaping. Although black silicon has long been known to absorb visible light, Jiang and colleagues were the first to see the material's potential for trapping infrared. They boosted its absorptive properties by tweaking the method through which they created their material. "We didn't completely reinvent the whole process, but we did extend the process to much taller nanowires," says Jiang, who developed the material in National Science Foundation-supported facilities at UW-Madison. They make those nanowires by using tiny particles of silver to help etch down into a thin layer of solid silicon, which results in a thicket of tall needles. Both the nanowires and the silver particles contribute to absorbing infrared light. The researchers' black silicon also has a flexible backing interspersed with small air channels. Those air channels prevent the stealth sheet from heating up too quickly as it absorbs infrared light.
Army contracts GenDyn for Stryker hull upgrades Washington (UPI) Jun 21, 2018 The Defense Department has awarded General Dynamics a contract for upgrades on the Stryker armored combat vehicle. The deal, from U.S. Army Contracting Command and announced on Wednesday, is valued at more than $68.5 million and enables General Dynamics to upgrade the flat bottom under bellies of the vehicle to the double V-hull configuration, according to the Defense Department. The double V-hull configuration is preferred by the U.S. military as it provides better protection for vehicl ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |