. Military Space News .
STELLAR CHEMISTRY
Studying Galaxy Growth Spurts in the Early Universe with NASA's Roman
by Agency Writers
Baltimore MD (SPX) Jun 28, 2022

Illustration showing how Roman will reveal the spectra of every galaxy in an image at once. Credit: Robert Hurt (IPAC/Caltech)

In the American Wild West, high noon was a time for duels and showdowns. When it comes to the history of the universe, cosmic noon featured fireworks of a different sort. Some 2 to 3 billion years after the big bang most galaxies went through a growth spurt, forming stars at a rate hundreds of times higher than we see in our own galaxy, the Milky Way, today. When it launches by May 2027, NASA's Nancy Grace Roman Space Telescope promises to bring new insights into the heyday of star formation.

Cosmic noon is an important time in the universe's history because it shaped what galaxies are like today. But many questions remain unanswered. Why did star formation peak and then decline? Why did some galaxies suddenly stop forming stars while others faded out gradually? How important were local influences like the number of galactic neighbors in shaping this evolution?

To answer these questions, astronomers need a bountiful sample of galaxies from that time period to study. Roman's power will lie in its ability to capture thousands of objects of interest in a single view. With such a large survey, scientists won't have to pick and choose their preferred targets in advance, which can lead to unintended biases.

"With a field of view 100 times wider than the Hubble Space Telescope, Roman can change the astronomical landscape by being so efficient," said Kate Whitaker, assistant professor of Astronomy at the University of Massachusetts in Amherst. Whitaker's research focuses on studying the regulation of star formation and quenching in massive galaxies in the early universe.

Roman's wide field of view also will enable astronomers to put individual galaxies into context by seeing how their growth spurts, and subsequent slow-downs, vary depending on their location within the cosmic "web" - the large-scale structure of the universe.

"You take one image, and you get everything. We'll see what and where the interesting objects are," said Casey Papovich, professor of Astronomy at Texas A and M University in College Station, Texas. Papovich's research includes quantifying the growth and assembly of stellar mass in galaxies in the early universe.

Going Beyond Imagery
While images can help astronomers spot galaxies of interest, much more information can be gleaned by spreading a galaxy's light out into a spectrum. Papovich, with Vicente (Vince) Estrada-Carpenter of St. Mary's University in San Antonio, Texas, and their colleagues, has pioneered a technique for extracting the light from all the stars in a galaxy combined.

By examining a galaxy's spectrum you can learn about the ages of its stars, its star formation history, how many heavy chemical elements it contains, and more. By doing this for a large number of early galaxies, astronomers can learn about the processes that drove and eventually brought an end to this period of rapid growth.

Roman's power can be boosted even further by observing distant galaxies whose light has been distorted by a phenomenon called gravitational lensing. The gravity of an intervening galaxy cluster can magnify and brighten the light from a more distant galaxy, allowing astronomers to study the background galaxy in more detail than would otherwise be available.

Whitaker is already using this technique with Hubble to study the cores of young galaxies versus their outskirts. This work seeks to determine if star formation shuts off from the outside-in or inside-out - that is, from the galaxy's outskirts to its center or vice versa.

"Galaxy quenching - a sudden end to star formation - can be a fast process on cosmological timescales. As a result, catching one in the act is difficult because they're so rare," said Whitaker. "Roman will help us find those rare examples."

While Roman's space-based view will provide excellent sharpness and stability, ground-based observatories also will come into play in studying cosmic noon. For example, the Atacama Large Millimeter/submillimeter Array can measure the gas and dust content of distant galaxies. And future 30-meter-class telescopes will be able to measure exquisite details in galaxy spectra due to their ability to collect lots of light.

"Roman and ground-based observatories will complement each other. Roman will single-handedly and efficiently identify and characterize the most interesting galaxies in large fields of view. We then can go back with ground-based telescopes to study them in more detail," explained Papovich.

Video: How the Roman Space Telescope Will Study Galaxies


Related Links
Roman Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
NASA's Webb to Uncover Riches of the Early Universe
Baltimore MD (SPX) Jun 23, 2022
For decades, telescopes have helped us capture light from galaxies that formed as far back as 400 million years after the big bang - incredibly early in the context of the universe's 13.8-billion-year history. But what were galaxies like that existed even earlier, when the universe was semi-transparent at the beginning of a period known as the Era of Reionization? NASA's next flagship observatory, the James Webb Space Telescope, is poised to add new riches to our wealth of knowledge not only by ca ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Canada announces new Arctic air, missile defenses with US

Belarus buys S-400, Iskander missiles from Russia: Lukashenko

Turkey says still talking to Russia about missile deliveries

Lockheed Martin to produce 8th THAAD Battery for US Govt

STELLAR CHEMISTRY
Estonia, Latvia mull joint bid for air defence systems

MDA selects Raytheon to continue developing a first-of-its-kind counter-hypersonic missile

Russian missiles hit Kyiv residential buildings

Northrop Grumman awarded MDA contract for Hypersonic Missiles defense development

STELLAR CHEMISTRY
Key milestones achieved in Manned-Unmanned Teaming for future air power

Volatus Aerospace Introduces AERIEPORT, an Autonomous Remote Drone Nesting Station

Drone strike kills three in Iraqi Kurdistan: officials

Insect-inspired AI for autonomous robots

STELLAR CHEMISTRY
Northrop Grumman runs Laser Communication Demonstration for Tranche 1 constellation

Raytheon Intelligence and Space conducts Troposcatter comms test for US Army

SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

COFFEE program jump-starts integrable filtering for wideband superiority

STELLAR CHEMISTRY
Kyiv mayor pleads for more weapons at NATO summit

Raytheon Technologies awarded next phase for US Army TITAN program

Slovakia to buy 152 Swedish combat vehicles

Kyiv says US precision artillery systems arrived in Ukraine

STELLAR CHEMISTRY
Britain boosts military aid to Ukraine; Norway sends rocket launchers

Johnson urges NATO allies to boost military spending

Biden announces $1 bn in new military aid for Ukraine

US says getting arms to Ukraine 'as rapidly as possible'

STELLAR CHEMISTRY
German leader slams 'ridiculous' Putin claim NATO imperialist

Beijing slams NATO over 'completely futile' China warning

Russia poses a 'direct threat' to NATO security: Stoltenberg

NATO wary of Russian, Chinese 'gains' on southern flank

STELLAR CHEMISTRY
A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

Seeing more deeply into nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.