![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Jul 07, 2016
Unmanned Aerial Vehicles (UAVs) of the future will be able to visually coordinate their flight and navigation just like birds and flying insects do, without needing human input, radar or even GPS satellite navigation. A research group at the University of Queensland, Australia is trying to make this future a reality by uncovering flying techniques that budgerigars and bees share, and applying their findings to UAV control programmes. Prof Mandyam Srinivasan, leading the research, explains: "We study how small airborne creatures such as bees and birds use their vision to avoid collisions with obstacles, fly safely through narrow passages, control their height above the ground and more. We then use biologically-inspired principles to design novel vision systems and algorithms for the guidance of UAVs." At first glance, insects and birds have very different brains in terms of size and architecture, yet the visual processing in both animals is very effective at guiding their flight. "Bees' brains weigh a tenth of a milligram and carry far fewer neurones than our own brains; yet the insects are capable of navigating accurately to food sources over 10 km away from their hive," remarks Prof Srinivasan. "Birds too can perform incredible aerobatics and navigational feats. These animals are clearly using simple and elegant strategies, honed by thousands of years of evolution." The team compares the flight of bees and budgies in particular because they are easy animals to study, as Prof Srinivasan explains: "These animals are clever, can be easily trained, and possess sophisticated visual systems that are not unlike those of our own." Regarding other benefits of the research, he says: "The study of their behaviour could also reveal some of the basic principles of visual guidance in a number of organisms including humans." Comparing the flight behaviours of these animals using high-speed cameras will lead to drastically improved UAV guidance systems. Prof Srinivasan explains: "The biologically-inspired principles we uncover will foster a new generation of fully autonomous UAVs that do not rely on external help such as GPS or radar. These UAVs could be incredibly useful for applications like surveillance, rescue operations, defence, and planetary exploration."
Related Links Society for Experimental Biology UAV News - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |