. Military Space News .
TIME AND SPACE
World's first space cold atom clock
by Staff Writers
Beijing (XNA) Sep 22, 2016


File image.

The cylinder-shaped black object bears no resemblance to any ordinary clock, but it is one of the most advanced timepieces ever. It was sent to space with the Space Laboratory of China's Tiangong-2 on Thursday, becoming the first ever cold atom clock working in space.

"This clock is so accurate that it should not lose one second in 30 to 300 million years in space," says Liu Liang, professor and director of the Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.

Unlike ordinary clocks, the timekeeping device is based on atomic physics.

And unlike the most atomic clocks, this clock uses more advanced "cold atom" technology, ensuring its ultra precision.

A mechanical watch loses almost one second a day; a quartz watch loses about one second every 10 days; the hydrogen atomic clock loses about one second over millions of years; the cold atom clock exceeds all in accuracy, Liu says.

Scientists attribute its accuracy to the microgravity environment in space as well as the coldness of the atoms the clock uses.

Under microgravity conditions, the cold atoms, pushed by lasers, perform a uniform motion in a straight line. By observing their performance, scientists get more precise atomic clock signal than under the gravity conditions on Earth.

Moreover, the laser cooling technology helps to eliminate the influence of atomic thermal motion on the clock's performance.

"Though molecules and atoms can't be seen in a room, they are actually moving at high-speed, and the speed is equivalent to temperature," Liu explains.

"We use laser cooling technology to slow down the atoms to a temperature that a refrigerator could never reach, so they nearly stay still," Liu says. "By observing the almost static atoms we make our measurements more precise."

Scientists believe that putting such a clock in space will help set a time standard to synchronize other atomic clocks in space more precisely.

"A more accurate clock system in space will benefit us on Earth," Liu says, citing possible substantial improvements in navigation and positioning accuracy.

Scientists say the development of cold atom technology could also make many experiments possible, such as deep space navigation and positioning, dark matter probes, and even gravitational wave exploration.

"A lot of research is based on our measurement of time and space. If we could detect subtle changes in time and space, we could make discoveries beyond the range of existing technology," Liu says.

"In the future, there will be more accurate clocks than this cold atom clock and our ultimate goal is to make a clock that will never be a second fast or slow over the life of the universe."

Source: Xinhua News Agency


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
China National Space Administration
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
1400 km of optical fiber connect optical clocks in France and Germany
Braunschweig, Germany (SPX) Aug 10, 2016
In the past few years, optical atomic clocks have made spectacular progress, becoming 100 times more precise than the best caesium clocks. So far, their precision has been available only locally, since frequency transfer via satellite cannot provide sufficient resolution. This has recently changed thanks to a new direct optical connection between France and Germany, established by joint wo ... read more


TIME AND SPACE
Saab gets order for man-portable air defense missile system

Lockheed's PAC-3 missile destroys ballistic missile targets in test

Lockheed gets $157 million U.S. Navy Aegis contract

Britain orders miniature anti-missile jammers

TIME AND SPACE
USS Bonhomme Richard test-fires Sea Sparrow missile

Raytheon receives $43 million Sidewinder missile contract modification

Raytheon awarded $9.8 million AMRAAM contract modification

Raytheon awarded $13.8 million SM-2, SM-6 contract modification

TIME AND SPACE
U.S. Navy approves Triton drone for production

Safran, Urban Aeronautics sign deal for Cormorant drone

DARPA announces Aerial Dragnet drone monitoring program

Keeping a Watchful Eye on Low-Flying Unmanned Aerial Systems in Cities

TIME AND SPACE
SES unveils new tactical surveillance and communications solution

Newest DARPA Challenge: 'Shift Paradigm' With Robot Radio

SES Government solutions to provide the US with a high performance network

The sky's no limit for young space professionals

TIME AND SPACE
UV Lens for Smart Ballistics System

Engility to aid Marines with new command-and-control gear

Sweden to buy 24 extra Archer howitzers

U.S. Marine Corps command and control system passes test

TIME AND SPACE
Booz Allen Hamilton wins USMC support contract

Hughes, Airbus DS to expand partnership

Raytheon sued by former employee over Afghanistan fraud allegations

S. Korea hosts arms show after N. Korea missile tests

TIME AND SPACE
Britain sends jets to intercept Russian bombers

Ukraine, rebels agree troop pullbacks in three areas: OSCE

Turkey arrests top journalist day after release

China PM comes to Canada looking for extradition treaty

TIME AND SPACE
Scientists forge nanogold chains with atomic precision

NIST illuminates transfer of nanoscale motion through microscale machine

Electron beam microscope directly writes nanoscale features in liquid with metal ink

A versatile method to pattern functionalized nanowires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.